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Introduction

In many fields of mathematics, one is naturally led to study tensor products of certain objects (e.g.
sheaves in algebraic geometry, cobordisms in topology, modules in commutative algebra). All of these
notions fit into the framework of monoidal categories, which gives an abstract definition of what a
tensor product structure on a category should be. The aim of this course is to give an introduction
to monoidal categories and tensor categories, the latter being certain monoidal categories endowed
with some extra structure. (They are abelian and have a linear structure that is compatible with the
tensor product, over some field.)

The first half of the course deals mainly with category-theoretical notions, starting from the def-
inition of a monoidal category and then discussing important additional properties such as rigidity
(the existence of duals) and braidings (functorial isomorphisms X ⊗ Y ∼= Y ⊗X). In the second half,
we will turn our attention to tensor categories. Our prime example is the category of Repk(G) finite-
dimensional representations of a group G over a field k, and we will discuss reconstruction theorems
that allow us to recover a group (or Hopf algebra) from the corresponding category of representa-
tions, together with its monoidal structure and the forgetful functor that sends a representation to
the underlying vector space. This gives rise to bijections between certain types of groups and Hopf
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algebras, up to isomorphism, and certain kinds of tensor categories, up to monoidal equivalence, which
are broadly referred to as Tannaka duality.

Author’s note

These notes are the my own synopsis of material that has been collected from many different sources,
but most importantly, from [EGNO15]. Further important references include [ML98, DM82, EGNO09]
and some websites such as nLab, MathStackExchenge, and Wikipedia. No originality is claimed, except
in the presentation of the material, and all mistakes should be considered my responsibility.

These notes are also a work in progress. If you find any mistakes or typos and if you have comments
or suggestions, please let me know.

I would like to thank Johannes Flake for helpful discussions and encouragement, and for making
his own notes available.

1 Monoidal categories

Definition 1.1. A category C consists of the following data:

(1) a class Ob(C) of objects of C;

(2) for every pair of objects X,Y ∈ Ob(C), a set HomC(X,Y ) of homomorphisms from A to B;

(3) for every triple of objects X,Y, Z ∈ Ob(C), a composition map

◦ : HomC(Y,Z)×HomC(X,Y ) −→ HomC(X,Z)

such that the following axioms hold:

(a) for X,Y, Z,W ∈ Ob(C) and homomorphisms f : X → Y , g : Y → Z, h : Z →W , we have

(h ◦ g) ◦ f = h ◦ (g ◦ f).

(b) for X ∈ Ob(C), there exists an identity homomorphism idX such that idX ◦ f = f and g ◦ idX = g
for all Y ∈ Ob(C) and homomorphisms f : Y → X and g : X → Y .

Remark 1.2. (1) The homomorphisms in a category are often simply referred to as morphisms.

(2) As in points (a) and (b) of the definition, we often denote a homomorphism f ∈ HomC(X,Y )
by an arrow f : X → Y .

(3) A morphism f : X → Y is called an isomorphism if there exists a morphism g : Y → X such
that f ◦ g = idY and g ◦ f = idX . In that case, we write g = f−1 and X ∼= Y .

Example 1.3. We list some important examples of categories:

� Set: the category of sets, with maps between sets as homomorphisms;

� Grp: the category of groups with group homomorphisms;

� AbGrp: the category of abelian groups with group homomorphisms;

� Vectk: the category of finite-dimensional k-vector spaces with k-linear maps, for a given field k;

� A−Mod: the category of A-modules with A-module homomorphisms, for a given algebra A; we
write A−mod for the subcategory of finite-dimensional A-modules.

2

https://ncatlab.org/nlab/show/HomePage
https://math.stackexchange.com/
https://en.wikipedia.org/wiki/Main_Page


Definition 1.4. A functor F : C → D between categories C and D assigns

(1) to every object X ∈ Ob(C) an object F (X) ∈ Ob(D);

(2) to every homomorphism f : X → Y in C a homomorphism F (f) : F (X)→ F (Y ) in D;

in such a way that
F (idX) = idF (X) and F (f ◦ g) = F (f) ◦ F (g).

Remark 1.5. Given two categories C and D, we can form the product category C ×D whose objects
are the pairs (X,Y ) of objects X ∈ Ob(C) and Y ∈ Ob(D), and where

HomC×D
(
(X,Y ), (Z,W )

)
= HomC(X,Z)×HomD(Y,W )

for X,Z ∈ Ob(C) and Y,W ∈ Ob(D). The composition and the identity morphisms are defined
component-wise in the obvious way. A functor from C × D → E to some other category E is often
called a bifunctor.

Definition 1.6. Let C and D be categories and let F : C → D and G : C → D be functors. A natural
transformation η : F → G is a family of morphisms ηA : F (A)→ G(A) in D, for every object A of C,
such that for every morphism f : A→ B in C, the following diagram commutes:

F (A)

F (B)

G(A)

G(B)

F (f)

ηA

G(f)

ηB

For an object A of C, we call ηA the component of η at A. A natural transformation is called a natural
isomorphism if all of its components are isomorphisms.

Remark 1.7. The functors between two categories C and D form a category Fun(C,D) whose mor-
phisms are natural transformations between functors. The composition of natural transformations is
defined componentwise.

Definition 1.8. A functor F : C → D is called an equivalence if there exists a functor G : D → C such
that F ◦G is naturally isomorphic to idD and G ◦ F is naturally isomorphic to idC .

Definition 1.9. A monoidal category is a tuple (C,1,⊗, α, λ, ρ), where

� C is a category,

� 1 is an object of C, called the unit object,

� ⊗ : C × C −→ C is a bifunctor called the tensor product,

� a : −⊗(−⊗−)→ (−⊗−)⊗− is a natural isomorphism, called the associativity constraint,

� λ : 1⊗− → idC and ρ : −⊗1→ idC are natural isomorphisms, called the (left and right) unitors,

subject to the following axioms:
Pentagon axiom: For all objects A,B,C,D of C, the following diagram commutes:
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A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ (C ⊗D) (A⊗ (B ⊗ C))⊗D

((A⊗B)⊗ C)⊗D

idA ⊗ αB,C,D

αA,B⊗C,D

αA,B,C ⊗ idD

αA,B,C⊗D

αA⊗B,C,D

In other words, we have(
αA,B,C⊗D

)
◦
(
αA,B⊗C,D

)
◦
(
idA ⊗ αB,C,D

)
=
(
αA⊗B,C,D

)
◦
(
αA,B,C ⊗ idD

)
.

Unit axiom / triangle axiom: For all objects A,B of C, the following diagram commutes:

A⊗ (1⊗B) (A⊗ 1)⊗B

A⊗B

αA,1,B

idA ⊗ λB ρA ⊗ idB

In other words, we have
(ρA ⊗ idB) ◦ αA,1,B = idA ⊗ λB.

Remark 1.10. (1) When no confusion is possible, we simply write C instead of (C,1,⊗, α, λ, ρ).
We also say that (1,⊗, α, λ, ρ) is a monoidal structure on the category C.

(2) Being monoidal is not a property of a given category, but an additional structure. A category
can admit more than one monoidal structure. (See the examples below.)

(3) The fact that ⊗ is a bifunctor means that for suitable morphisms a, b, c, d in C, we have

(a⊗ c) ◦ (b⊗ d) = (a ◦ b)⊗ (c ◦ d).

(4) Instead of assuming the existence of 1 with natural transformations λ and ρ subject to the unit
axiom, one can start from the (seemingly weaker, but actually equivalent) assumptions that
there exists an object 1 with an isomorphism ι : 1 ⊗ 1 → 1 such that the functors 1 ⊗ − and
− ⊗ 1 are equivalences. (No additional assumptions on the isomorphism ι are necessary.) See
Sections 2.1 and 2.2 of [EGNO15] for more details.

Example 1.11. (1) The category Set of sets has a monoidal structure where the tensor product is
given by the cartesian product and the unit object is a singleton {•}.

(2) The category Grp of groups has a monoidal structure where the tensor product is given by the
cartesian product and the unit object is the trivial group {1}.

(3) The category AbGrp of abelian groups has a monoidal structure where the tensor product is
given by the usual tensor product −⊗Z− and the unit object is the group Z of integers. It also
inherits a different monoidal structure from the category Grp; see the previous point.

(4) The category Vectk of vector spaces over a field k has a monoidal structure where the tensor
product is given by the usual tensor product −⊗k − and the unit object is the one-dimensional
vector space k.
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(5) The category Repk(G) of finite dimensional representations of a group G over a field k admits
a monoidal structure where the tensor product is the usual tensor product of representations
and the unit object is the trivial one-dimensional representation k. More precisely, if we identify
Repk(G) with the category of finite-dimensional modules over the group algebra k[G] then the
action of k[G] on the tensor product M⊗N of two k[G]-modules M and N is uniquely determined
by g · (m⊗ n) = gm⊗ gn for g ∈ G, m ∈M and n ∈ N .

In the following, we refer to the objects of Rep(G) as G-modules.

(6) For a category C, the category End(C) = Fun(C, C) of endofunctors of C has a monoidal struc-
ture, where the tensor product is given by the composition of functors and the unit object is the
identity functor idC . The associativity constraints and unitors are identity natural transforma-
tions.

The two next examples will seem quite trivial for now, but they will become more interesting later
when we add extra structure:

(7) Let G be a monoid and A an abelian group. Then we can define a monoidal category CGA with
objects Ob(CGA ) = {δg | g ∈ G} indexed by G and homomorphisms

HomCGA
(δg, δh) =

{
A if g = h,

∅ otherwise,

for g, h ∈ G. The tensor product is defined by δg⊗ δh = δgh and by a⊗a′ = aa′ ∈ A for g, h ∈ G
and a, a′ ∈ A, the unit object is δe (where e ∈ G is the unit element) and the associativity
constraints and unitors are identity maps.

(8) Let G be a monoid and let VectGk be the category of finite-dimensional G-graded k-vector
spaces V =

⊕
g∈G Vg, with homomorphisms given by grading-preserving linear maps. (That is,

for V =
⊕

g Vg and W =
⊕

gWg two G-graded vector spaces, the homomorphisms from V to

W in VectGk are the linear maps f : V → W that satisfy f(Vg) ⊆ Wg for all g ∈ G.) Then the
monoidal structure on Vectk induces a monoidal structure VectGk , where the grading on the
tensor product of G-graded vector spaces V and W is given by

(V ⊗W )g =
⊕
hh′=g

Vh ⊗Wh′

for g ∈ G. The tensor product of two homomorphisms in VectGk is just the usual tensor product
of linear maps. The unit object is the one-dimensional vector space k = ke whose unique non-
zero grading piece is indexed by the unit object e ∈ G. The associativity constraint and the
unitors come from the category Vectk.

Observe that there is a faithful functor iGk : CGk× → VectGk with iGk (δg) = kg the one-dimensional
vector space with grading concentrated in degree g, for g ∈ G, and with the obvious defini-
tion on homomorphisms. This functor is compatible with the tensor product (up to a natural
isomorphism); it is an example of a monoidal functor (to be defined shortly).

In our final example, we demonstrate that there are monoidal categories with a less obvious choice of
associativity constraint.

(9) Let G be a monoid, let A an abelian group and let ω be a 3-cocycle for G with values in A, i.e.
a map ω : G×3 → A with

(1.1) ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g2, g3, g4)ω(g1, g2g3, g4)ω(g1, g2, g3)
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for g1, g2, g3, g4 ∈ G. Then we can define a monoidal category CG,ωA with underlying category CGA
and with tensor product and unit object defined as in point (7), but with associativity constraint
αω defined by

αωg,h,k = ω(g, h, k) : δg ⊗ (δh ⊗ δk) = δghk −→ δghk = (δg ⊗ δh)⊗ δk

for g, h, k ∈ G. Observe that the 3-cocycle condition implies that CG,ωA satisfies the pentagon
axiom. (In fact, a map ω : G×3 → A defines an associativity constraint for CGA if and only if ω
is a 3-cocycle.) The unitors are defined by λg = ω(e, e, g) and ρg = ω(g, e, e)−1 for g ∈ G, and
the unit axiom becomes the equation ω(g, e, h) = ω(g, e, e) · ω(e, e, h) for g, h ∈ G (which also
follows from (1.1) by setting g2 = g3 = e).

Given a 3-cocycle ω : G×3 → k× with values in the multiplicative group of a field k, we can
extend the associativity constraint αω on CGk× to an associativity constraint αω on VectGk via

αωkg ,kh,kk = ω(g, h, k) · αkg ,kh,kk ,

for g, h, k ∈ G, extended by additivity, where α denotes the ‘usual’ associativity constraint in
VectGk . (Note that every object of VectGk is a direct sum of objects of the form kg with g ∈ G.)

Remark 1.12. Given a monoidal category C = (C,1,⊗, α, λ, ρ), we define the opposite monoidal
category Cop = (C,1,⊗op, αop, ρ, λ) with the same underlying category, but tensor product defined by
X ⊗op Y = Y ⊗ X and f ⊗op g = g ⊗ f for objects X,Y and homomorphisms f, g in C, and with
associativity constraint given by αop

X,Y,Z = α−1
Z,Y,X for objects X,Y, Z of C.

This is not to be confused with the reverse category Crev with HomCrev(X,Y ) = HomC(X,Y ). The
latter can also be endowed with a canonical monoidal structure. Note that Crev is often also called the
opposite category of C; we use non-standard terminology here to avoid confusion with the opposite
monoidal category defined above.

Lemma 1.13. For all objects A,B of C, we have

ρA⊗B ◦ αA,B,1 = idA ⊗ ρB and λA⊗B ◦ α1,A,B = λA ⊗ idB.

Proof. Consider the following diagram, where all arrows are isomorphisms:

A⊗ (B ⊗ (1⊗D)) A⊗ ((B ⊗ 1)⊗D)

(A⊗B)⊗ (1⊗D) (A⊗ (B ⊗ 1))⊗D

((A⊗B)⊗ 1)⊗D

A⊗ (B ⊗D)

(A⊗B)⊗D

idA ⊗ αB,1,D

αA,B⊗1,D

αA,B,1 ⊗ idD

αA,B,1⊗D

αA⊗B,1,D

idA ⊗ (idB ⊗ λD)

αA,B,D

idA⊗B ⊗ λD

idA ⊗ (ρB ⊗ idD)

(idA ⊗ ρB)⊗ idD

ρA⊗B ⊗ idD
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The external pentagon commutes by the pentagon axiom, the quadrangles commute by naturality
of the associativity constraint α, and the top triangle and the bottom left triangle commute by
the triangle axiom. Since all arrows are isomorphisms, this implies that the bottom right triangle
commutes. Setting D = 1 and using the natural isomorphism ρ : − ⊗1 → idC , it follows that the
following diagram commutes:

A⊗ (B ⊗ 1) (A⊗B)⊗ 1

A⊗B

αA,B,1

idA ⊗ ρB ρA⊗B

This proves the first claim, the second claim can be proven analogously.

Definition 1.14. Let (C,1,⊗, α, λ, ρ) and (C′,1′,⊗′, α′, λ′, ρ′) be two monoidal categories. A monoidal
functor from C to C′ is a triple (F,ϕ, ε), where F : C → C′ is a functor, ϕ : F (−⊗−)→ F (−)⊗′ F (−)
is a natural isomorphism and ϕ : F (1) → 1′ is an isomorphism, such that the following diagrams
commute:

F
(
A⊗ (B ⊗ C)

)
F
(
(A⊗B)⊗ C

)

F (A)⊗′ F (B ⊗ C) F (A⊗B)⊗′ F (C)

F (A)⊗′
(
F (B)⊗′ F (C)

) (
F (A)⊗′ F (B)

)
⊗′ F (C)

F (αA,B,C)

ϕA⊗B,C

ϕA,B ⊗ idF (C)

ϕA,B⊗C

idF (A) ⊗ ϕB,C

α′F (A),F (B),F (C)

F (A⊗ 1) F (A)⊗′ F (1)

F (A) F (A)⊗′ 1′

ϕA,1

F (ρA) idF (A) ⊗′ ε

ρ′F (A)

F (1⊗A) F (1)⊗′ F (A)

F (A) 1′ ⊗′ F (A)

ϕ1,A

F (λA) ε⊗′ idF (A)

λ′F (A)

A monoidal natural transformation between monoidal functors (F,ϕ, ε) and (F ′, ϕ′, ε′) is a natural
transformation ψ : F → F ′ such that

ϕ′ ◦ ψ−⊗− = ψ ⊗′ ψ ◦ ϕ and ε = ε′ ◦ ψ1,

i.e. the following diagrams commute for all objects A,B of C:

F (A⊗B) F (A)⊗′ F (B)

F ′(A⊗B) F ′(A)⊗′ F ′(B)

ϕA,B

ψA⊗B ψA ⊗′ ψB

ϕ′A,B

F (1) F ′(1)

1′

ψ1

ε
ε′
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Remark 1.15. (1) Being monoidal for a functor is an additional structure, and not a property.
However, being monoidal for a natural transformation is a property.

(2) The composition of two monoidal functors (F,ϕ, ε) : C → D and (F ′, ϕ′, ε′) : D → E can be
considered as a monoidal functor with structure maps defined as follows, for objects X,Y of C:

F ′
(
F (X ⊗ Y )

) F ′(ϕX,Y )
−−−−−−→ F ′

(
F (X)⊗ F (Y )

) ϕ′
F (X),F (Y )−−−−−−−→ F ′

(
F (X)

)
⊗ F ′

(
F (Y )

)
F ′
(
F (1)

) F ′(ε)−−−→ F ′(1)
ε′−→ 1.

(3) Given a monoidal functor (F,ϕ, ε) : C → D such that F is an equivalence of categories, one
can show that it is possible to choose a monoidal functor (G,ψ, ε) : D → C such that there are
monoidal natural isomorphisms F ◦G→ idD and G ◦ F → idC . In that case, we say that C and
D are monoidally equivalent. For more details, see Proposition 4.4.2 in [SR72].

Example 1.16. (1) For a group G and a field k, the forgetful functor F : Repk(G)→ Vectk which
sends a G-module to the underlying vector space is monoidal. (The structure maps ϕ and ε are
identity maps.) For a G-module V and for g ∈ G, let us write ϕ(g)V ∈ Endk(V ) for the action
of g on V . Then ϕ(g) defines a natural transformation from the functor F to itself; we write
ϕ(g) ∈ End(F ). (This follows from the fact that for a homomorphism f : V →W of G-modules,
the equality ϕ(g)W ◦ F (f) = F (f) ◦ ϕ(g)V is equivalent to g · f(v) = f(g · v) for v ∈ V .) The
natural transformation ϕ(g) is monoidal because ϕ(g)V⊗W = ϕ(g)V ⊗ ϕ(g)W and ϕk(g) = idk,
by definition of the tensor product of G-modules and of the trivial G-module. This example will
play an important role later in the course.

Conversely, every vector space can be considered as a G-module with the trivial action of G,
and this gives rise to a monoidal functor e : Vectk → Repk(G).

(2) For a commutative ring R, there is a functor F : Setrev → R −Mod that sends a set X to the
free R-module F (X) := RX = Map(X,R). At the level of homomorphisms, we define F (f) via
g 7→ g ◦ f , for maps f : X → Y and g : X → R. This functor is monoidal with respect to the
monoidal structure on Set via the Cartesian product and on R −Mod via the usual tensor
product of R-modules.

(3) The total cohomology functor H∗ : coch(Vectk) → VectZk from the category of cochain com-
plexes of k-vector spaces to the category of graded k-vector spaces is monoidal with respect to
the usual derived tensor product on coch(Vectk) by the Künneth theorem: For two cochain
complexes X• and Y•, we have

H i(X• ⊗ Y•) ∼=
⊕
j+k=i

Hj(X•)⊗Hk(Y•),

matching the definition of the tensor product of Z-graded vector spaces.

(4) Let G and H be groups, let A be an abelian group and let ω : G×3 → A and π : H×3 → A
be 3-cocycles. Suppose that there is a monoidal functor (F,ϕ, ε) from CG,ωA to CH,πA , for some
ϕ : −⊗− → −⊗− and ε ∈ EndCGA

(δe) = A. Then F defines a map f : G→ H via F (δg) = δf(g)

for g ∈ G, and f is a homomorphism because

δf(gh) = F (δgh) = F (δg ⊗ δh) ∼= F (δg)⊗ F (δh) = δf(g) ⊗ δf(h) = δf(g)f(h)

for g, h ∈ G. Furthermore, ϕ defines a map ϕ : G×G→ A via

A 3 ϕ(g, h) := ϕg,h : F (δgh) = F (δg ⊗ δh)→ F (δg)⊗ F (δh) = δf(g)δf(h) = δf(gh)
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for g, h ∈ G, and by the definition of monoidal functors, we have

ϕ(g, h)ϕ(gh, k)ω(g, h, k) = π
(
f(g), f(h), f(k)

)︸ ︷︷ ︸
=f∗π(g,h,k)

ϕ(h, k)ϕ(g, hk)

for all g, h, k ∈ G, that is

f∗π−1ω(g, h, k) = ϕ(h, k) · ϕ(g, hk) · ϕ(g, h)−1 · ϕ(gh, k)−1 = d2ϕ(g, h, k).

In other words, the 3-cocycle ωf∗π−1 = d2ϕ is a 3-coboundary, so ω and f∗π define the same
element of the third cohomology group H3(G,A). (The latter is defined as the quotient of
the group of 3-cocycles by the group of 3-coboundaries.) This (and the discussion in point
(9) of Example 1.11) relates the equivalence classes of monoidal structures on CGA to H3(G,A).
Similarly, one can relate the equivalence classes of monoidal structures on VectGk to H3(G, k×).
For more details, see Section 2.6 in [EGNO15].

2 Module categories

Unless otherwise stated, we continue to assume in this section that (C,1,⊗, α, λ, ρ) is a monoidal
category (which we usually abbreviate by C).

Definition 2.1. A right C-module category is a quadruple (M,⊗a, β, ϑ), where

� M is a category,

� ⊗a : M×C →M is a bifuctor, called the action,

� β : −⊗a(−⊗−)→ (−⊗a −)⊗a − is a natural isomorphism, called the associativity constraint,

� ϑ : −⊗a1→ idM is a natural isomorphism, called the unitor,

subject to the following axioms:
Pentagon axiom: For all objects M of M and A,B,C of C, the following diagram commutes:

M ⊗a (A⊗ (B ⊗ C)) M ⊗a ((A⊗B)⊗ C)

(M ⊗a A)⊗a (B ⊗ C) (M ⊗a (A⊗B))⊗a C

((M ⊗a A)⊗a B)⊗a C

idM ⊗ αA,B,C

βM,A⊗B,C

βM,A,B ⊗ idC

βM,A,B⊗C

βM⊗aA,B,C

In other words, we have(
βM⊗aA,B,C

)
◦
(
βM,A,B⊗C

)
=
(
βM,A,B ⊗ idC

)
◦
(
βM,A⊗B,C

)
◦
(
idM ⊗ αA,B,C

)
.

Unit axiom / triangle axiom: For all objects M ofM and A of C, the following diagram commutes:
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M ⊗a (1⊗A) (M ⊗a 1)⊗a A

M ⊗a A

βM,1,A

idM ⊗a λA ϑM ⊗a idB

In other words, we have
(ϑM ⊗a idA) ◦ βM,1,A = idM ⊗a λA.

Remark 2.2. (1) We can analogously define a left C-module category to be a tuple (M,⊗a, β, ϑ)
with an action bifunctor ⊗a : C ×M→M, an associativity constraint

β : (−⊗−)⊗a − → −⊗a (−⊗a −)

and a unitor ϑ : 1⊗a − → idM.

(2) Being a module category over C is not a property of a given category but an additional structure.

Example 2.3. (1) C is a right C-module category if we set ⊗a = ⊗, β = α and ϑ = ρ.

(2) For two categories C and D, the category Fun(C,D) is a right End(C)-module category, where
⊗a is defined by composition of functors:

(F,G) 7→ F ⊗a G := F ◦G, (η, ν) 7→ η ⊗a ν := ην

for functors F : C → D and G : C → C and natural transformations η : F → F ′ and ν : G→ G′.

(3) For a field k and a group G, the category Repk(G) is a right Vectk(G)-module category. Indeed,
viewing a k-vector space as a trivial G-module gives rise to a (monoidal) functor e : Vectk(G)→
Repk(G), and we can define −⊗a − = −⊗ e(−)

Lemma 2.4. Given a left module category (M,⊗a, β, ϑ) over C, there is a monoidal functor

(F,ϕ, ε) : C −→ End(M)

with F = idC ⊗a −,

ϕA,B = βA,B,− : F (A⊗B) = (A⊗B)⊗a −
∼−−→ A⊗a (B ⊗a −) = F (A) ◦ F (B)

and ε = ϑ : 1⊗a − → idM.

Proof. This is straightforward to check using the definitions.

Lemma 2.5. A monoidal functor (F,ϕ, ε) : C → End(M) gives rise to a left C-module category
structure (M,⊗a, β, ϑ) via −⊗a − = F (−)(−),

βA,B,M = (ϕA,B)M : (A⊗B)⊗aM = F (A⊗B)(M)
∼−−→

(
F (A) ◦ F (B)

)
(M) = A⊗a (B ⊗aM)

and ϑ = ε : 1⊗a − = F (1)(−)
∼−−→ idM.

Remark 2.6. Combining Lemmas 2.4 and 2.5, we see that there is a one-to-one correspondence
between left C-module structures on a category M and monoidal functors C → End(M).
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Definition 2.7. Let (M,⊗a, β, ϑ) and (M′,⊗′a, β′, ϑ′) be two right C-module categories. A right
C-module functor from M to M′ is a pair (F, γ), where F : M→M′ is a functor and

γ : F (−⊗a −) −→ F (−)⊗′a −

is a natural isomorphism such that the following diagrams commute for all objects X,Y of C and M
of M:

F
(
M ⊗a (X ⊗ Y )

)
F
(
(M ⊗a X)⊗a Y

)

F (M)⊗′a (X ⊗ Y )

F (M ⊗a X)⊗′a Y

(
F (M)⊗′a X

)
⊗′a Y

F (βM,X,Y )

γM⊗aX,Y

γM,X⊗Y

β′F (M),X,Y

γM,X ⊗′a idY

F (M ⊗a 1) F (M)⊗′a 1

F (M)

γM,1

F (ϑM ) ϑ′F (M)

A right C-module natural transformation from a right C-module functor (F, γ) : M →M′ to a right
C-module functor (F ′, γ′) : M →M′ is a natural transformation ψ : F → F ′ such that the following
diagram commutes for all objects X of C and M of M:

F (M ⊗a X) F (M)⊗′a X

F ′(M ⊗a X) F ′(M)⊗′a X

γM,X

ψM⊗aX ψM ⊗′a idX

γ′M,X

We write Endmod−C(M) for the monoidal category of right C-module endofunctors of a right C-module
category M, with homomorphisms given by the right C-module natural transformations. The tensor
product is defined as the composition of functors. (There is a canonical choice of structure maps
which endows the composition of two right C-module functors with the structure of a right C-module
functor, cf. part (2) of Remark 1.15)

3 Strictness and coherence

Definition 3.1. A monoidal category C is called strict if

X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z and 1⊗X = X = X ⊗ 1

for all objectsX,Y, Z of C (note that we require equalities and not isomorphisms) and if all associativity
constraints and unitors are identity maps.
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Example 3.2. The monoidal category End(D) of endofunctors of a category D is strict, and so is
the category Endmod−C(M) of right C-module endofunctors of a right C-module category M.

Theorem 3.3. Every monoidal category is monoidally equivalent to a strict monoidal category.

Proof (sketch). We show that C is equivalent to the strict category C′ := Endmod−C(C) of right C-
module endofunctors of C. We can define a functor F : C → C′ by

F (A) = (A⊗− , αA,−,−) and F (f) = f ⊗−

for every object A of C and every morphism f : A→ B in C. A functor G : C′ → C is given by

G(X) = X(1) and G(η) = η1

for a right C-module endofunctor (X, γ) of C and a right C-module natural transformation η : X → Y .
Then one can endow F and G with structure maps to make them monoidal functors, and check that
G ◦ F = idC and F ◦ G is naturally isomorphic to the identity functor on C′. Indeed, given a right
C-module endofunctor (X, γ) of C and an object A of C, we have an isomorphism

F ◦G
(
(X, γ)

)
(A) = X(1)⊗A

γ−1
1,A−−−→ X(1⊗A)

X(λA)−−−−→ X(A)

which gives rise to a right C-module natural isomorphism

ϕ(X,γ) : F ◦G
(
(X, γ)

)
=
(
X(1)⊗−, αX(1,−,−)

)
−→ (X, γ)

that is natural in (X, γ). This yields the desired (monoidal) natural isomorphism F ◦G→ idEndend−C(C).
The details of the proof are left to the reader.

Example 3.4. In this example, we construct a strict monoidal category that is monoidally equivalent
to Vectk for a field k. Let Matk be the category whose objects are the natural numbers

Ob(Matk) := N = {0, 1, 2, . . .},

with homomorphisms from m ∈ N to n ∈ N given by the set

HomMatk(m,n) := Matn×m(k)

of n×m-matrices over k (i.e. matrices with m columns and n rows). Composition is given by matrix
multiplication. We can define a monoidal structure on Mat by m⊗n = m ·n for m,n ∈ N at the level
of objects. The tensor product of two matrices A = (aij) ∈ Matn×m(k) and B = (bij) ∈ Matn′×m′(k)
is the Kronecker product

A⊗B =

a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 ∈ Mat(nn′)×(mm′)(k).

and the unit object is 1 ∈ N. (It is straightforward to verify that the Kronecker product is associative.)
We can define a functor F : Matk → Vectk by F (m) = k⊕m for m ∈ N, at the level of objects.

For A ∈ Matn×m(k), we define F (A) ∈ Homk(k⊕m,k⊕n) to be left multiplication by A on the column
vector space k⊕m. It is straightforward to see that F is fully faithful and essentially surjective, hence
an equivalence of categories, and that F is monoidal.

Theorem 3.5. Let A1, . . . , An be objects of C and let P and Q be two paranthesized tensor products of
A1, . . . , An (in this order, but not necessarily with the same parenthesization), possibly with copies of
the unit object 1 inserted in different places. Let f : P → Q and g : P → Q be two isomorphisms that
are obtained by composing tensor products of identity morphisms, associativity constraints, unitors
and their respective inverses. Then f = g.
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Proof. This follows from the strictness theorem. More specifically, let F : C → C0 be a monoidal
equivalence from C to a strict monoidal category C0. Then we have F (P ) = F (Q) and F (f) = F (g).
Since F induces a bijection between HomC(P,Q) and HomC0

(
F (P ), F (Q)

)
, it follows that f = g.

Remark 3.6. An example of a setting in which we can use the coherence theorem 3.5 is Lemma 1.13:
For objects A and B of C, the homomorphisms

ρA⊗B ◦ αA,B,1 : A⊗ (B ⊗ 1) −→ A⊗B and idA ⊗ ρB : A⊗ (B ⊗ 1) −→ A⊗B

coincide. This does not yield an alternative proof of Lemma 1.13 because the lemma is used in the
proof of the strictness theorem 3.3, which is used in turn in the proof of the coherence theorem 3.5.

Another example is that for objects A,B,C,D,E of C, all of the isomorphism between

A⊗ (B ⊗ (C ⊗ (D ⊗ E))) and (((A⊗B)⊗ C)⊗D)⊗ E

that are obtained as compositions of tensor products of identity homomorphisms and associativity
constraints coincide.

4 Duals and rigidity

We continue to assume that (C,⊗,1, α, λ, ρ) is a monoidal category. In order to simplify the notation,
we will often ignore associativity constraints and unitors in the following.

In this section, we want to discuss the notion of dual objects in monoidal categories. We start
with a motivating example.

Example 4.1. Let k be a field, let V be a finite-dimensional k-vector space and let V ∗ = Homk(V,k)
be the dual space of V . Then there is a canonical evaluation map

evV : V ∗ ⊗ V −→ k with ξ ⊗ v 7−→ ξ(v).

Furthermore, for a basis {v1, . . . , vn} of V with dual basis {v∗1, . . . , v∗n} of V ∗ (defined via v∗i (vj) = δij),
there is a coevaluation map

coevV : k −→ V ⊗ V ∗, λ 7−→ λ ·
n∑
i=1

vi ⊗ v∗i ,

and this map is independent of the choice of basis. Using the definitions, one easily checks that the
composition

V ∼= k⊗ V coevV ⊗idV−−−−−−−→ V ⊗ V ∗ ⊗ V idV ⊗evV−−−−−−→ V ⊗ k ∼= V

coincides with the identity map on V , that is (idV ⊗ evV ) ◦ (coevV ⊗ idV ) = idV .
Now suppose that we are given a vector space W with linear maps

e : W ⊗ V −→ k and c : k −→ V ⊗W.

Then we can define linear maps f : W → V ∗ and g : V ∗ →W via

f(w) = e(w ⊗−) and g(ξ) = (ξ ⊗ idW ) ◦ c(1),

for w ∈W and ξ ∈ V ∗. Now one can further show that f and g are mutually inverse if and only if

(idV ⊗ e) ◦ (c⊗ idV ) = idV and (e⊗ idW ) ◦ (idW ⊗ c) = idW .

This motivates the definition of duals below.
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Definition 4.2. A left dual of an object X of C is an object X∗ of C together with homomorphisms

evX : X∗ ⊗X −→ 1 and coevX : 1 −→ X ⊗X∗,

called evaluation and coevaluation, such that the compositions

X ∼= 1⊗X coevX⊗idX−−−−−−−→ X ⊗X∗ ⊗X idX⊗evX−−−−−−→ X ⊗ 1 ∼= X

and

X∗ ∼= X∗ ⊗ 1
idX∗⊗coevX−−−−−−−−→ X∗ ⊗X ⊗X∗ evX⊗idX∗−−−−−−→ 1⊗X∗ ∼= X∗

afford the identity homomorphisms on X and X∗, respectively. The equalities

idX = (idX ⊗ evX) ◦ (coevX ⊗ idX) and idX∗ = (evX ⊗ idX∗) ◦ (idX∗ ⊗ coevX)

are called the zig-zag relations.
A right dual of X is an object ∗X of C together with homomorphisms

ev′X : X ⊗X∗ −→ 1 and coev′X : 1 −→ X∗ ⊗X,

called evaluation and coevaluation, such that the compositions

X ∼= X ⊗ 1
idX⊗coev′X−−−−−−−→ X ⊗X∗ ⊗X

ev′X⊗idX−−−−−−→ 1⊗X ∼= X

and

X∗ ∼= 1⊗X∗
coev′X⊗idX∗−−−−−−−−→ X∗ ⊗X ⊗X∗

idX∗⊗ev′X−−−−−−→ X∗ ⊗ 1 ∼= X∗

afford the identity homomorphisms on X and X∗, respectively.

Example 4.3. (1) The dual space V ∗ of a finite-dimensional vector space V is a left (and right)
dual of V in Vectk.

(2) For a G-module M in Repk(G), the dual space M∗ becomes a G-module via (g ·ξ)(v) = ξ(g−1 ·v).
The linear maps evM : M∗⊗M → k and coevM : k→M⊗M∗ are homomorphisms of G-modules,
so M∗ is a left (and right) dual of M in Repk(G).

(3) Let G be a monoid. If for g ∈ G, the one-dimensional graded vector space kg has a left dual then
g has an inverse in G, since a tensor product

(⊕
h Vh

)
⊗kg admits a non-zero homomorphism to

ke only if hg = e for some h ∈ G. If G is a group then every G-graded vector space V =
⊕

g Vg
has a left (and right) dual, given by the dual space V ∗ with grading defined by V ∗g = (Vg−1)∗,
for g ∈ G.

Lemma 4.4. If an object X of C admits a left (or right) dual then the latter is unique up to isomor-
phism.

Proof. Let X∗1 and X∗2 be two left dual objects of X and denote by e1, e2, c1, c2 the corresponding
evaluation and coevaluation homomorphisms. We define two homomorphisms

f : X∗1
∼= X∗1 ⊗ 1

idX∗1
⊗c2

−−−−−→ X∗1 ⊗X ⊗X∗2
e1⊗idX∗2−−−−−→ 1⊗X∗2 ∼= X∗2

and

g : X∗2
∼= X∗2 ⊗ 1

idX∗2
⊗c1

−−−−−→ X∗2 ⊗X ⊗X∗1
e2⊗idX∗−−−−−→ 1⊗X∗1 ∼= X∗1

and consider the following commutative diagram:
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X∗1 X∗1 ⊗X ⊗X∗1

X∗1 ⊗X ⊗X∗2 X∗1 ⊗X ⊗X∗2 ⊗X ⊗X∗1 X∗1 ⊗X ⊗X∗1

X∗2 X∗2 ⊗X ⊗X∗1 X∗1

idX∗
1
⊗ c1

idX∗
1
⊗ c2 idX∗

1
⊗ c2 ⊗ idX⊗X∗

1

idX∗
1⊗X⊗X∗

1

idX∗
1⊗X⊗X∗

2
⊗ c1

e1 ⊗ idX∗
2

idX∗
1⊗X ⊗ e2 ⊗ idX∗

1

e1 ⊗ idX∗
2⊗X⊗X∗

1
e1 ⊗ idX∗

1

idX∗
2
⊗ c1 e2 ⊗ idX∗

1

The squares commute by the bifunctoriality of the tensor product and the triangle commutes because
X∗2 is a left dual of X. Hence the composition along the top right boundary of the diagram coincides
with the composition along the bottom left boundary. The former is the identity on X∗1 because X∗1
is a left dual of X, and the latter equals g ◦ f . Analogously, one sees that id∗X2

= f ◦ g, and the claim
follows.

Remark 4.5. More specifically, the left dual of an object of C is unique up to a unique isomorphism in
the following sense: In the notation of Lemma 4.4, assume that we have an homomorphism h : X∗1 →
X∗2 such that e1 = e2 ◦ (h ⊗ idX) and c2 = (idX ⊗ h) ◦ c1. Then one can show that h coincides with
the isomorphism f = (e1 ⊗ idX∗2 ) ◦ (idX∗1 ⊗ c2) from the proof of Lemma 4.4.

Lemma 4.6. If an object X of C has a left dual X∗ then X is a right dual of X∗, that is ∗(X∗) = X.
Analogously, if X has a right dual then (∗X)∗ = X.

Proof. For the first claim, set ev′X∗ = evX and coev′X∗ = coevX . The second claim is analogous.

Lemma 4.7. Let X and Y be objects of C with left duals. Then Y ∗ ⊗ X∗ is a left dual of X ⊗ Y .
Similarly, if X and Y have right duals then ∗Y ⊗ ∗X is a right dual of X ⊗ Y .

Proof. We define

evX⊗Y : Y ∗ ⊗X∗ ⊗X ⊗ Y idY ∗⊗evX⊗idX∗−−−−−−−−−−→ Y ∗ ⊗ 1⊗ Y ∼= Y ∗ ⊗ Y evY−−→ 1

and

coevX⊗Y : 1
coevX−−−−→ X ⊗X∗ ∼= X ⊗ 1⊗X∗ idX⊗coevY ⊗idX∗−−−−−−−−−−−→ X ⊗ Y ⊗ Y ∗ ⊗X∗,

omitting associativity constraints and unitors. It is straightforward to check that these homomor-
phisms satisfy the zig-zag relations.

Lemma 4.8. Let C and D be monoidal categories and let (F,ϕ, ε) : C → D be a monoidal functor. If
an object X of C has a left dual X∗ then F (X∗) is a left dual of F (X).

Proof. Consider the homomorphisms

evF (X) : F (X∗)⊗ F (X)
ϕ−1
X∗,X−−−−→ F (X ⊗X∗) F (evX)−−−−→ F (1C)

ε−→ 1D

and

coevF (X) : 1D
ε−1

−−→ F (1C)
F (coevX)−−−−−−→ F (X ⊗X∗)

ϕX,X∗−−−−→ F (X)⊗ F (X∗).

It is straightforward to verify that evF (X) and coevF (X) satisfy the zig-zag relations, using the zig-zag
relations for evX and coevX .
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Definition 4.9. A functor G : D → C is called right adjoint of a functor F : C → D if there exists a
natural isomorphism

HomC
(
−, G(−)

) ∼= HomD
(
F (−),−

)
of functors from C × D to Set. In that case, we also say that F is left adjoint to G and write F a G.

Remark 4.10. We have F a G if and only if there exist natural transformations

ε : FG −→ idD and η : idC −→ GF,

called the unit and the counit of the adjunction F a G, such that the compositions

F = F ◦ idC
idF η−−−→ FGF

ε idF−−−→ idD ◦ F = F and G = idC ◦G
η idG−−−→ GFG

idG ε−−−→ G ◦ idD = G

are equal to idF and idG, respectively. The equalities idF = (ε idF )◦ (idF η) and idG = (idG ε)◦ (η idG)
are called the zig-zag relations.

Given a natural isomorphism

ψ : HomC
(
−, G(−)

)
−→ HomD

(
F (−),−

)
,

we can define

εX = ψ−1
X,F (X)(idF (X)) : X −→ GF (X) and ηY = ψG(Y ),Y (idG(Y )) : FG(Y ) −→ Y

for all objects X of C and Y of D. Conversely, given a unit ε : FG→ idD and a counit η : idC → GF ,
we obtain a natural isomorphism

ψ : HomC
(
−, G(−)

)
−→ HomD

(
F (−),−

)
via

ψX,Y (f) = εX ◦ F (f) : F (X)
F (f)−−−→ FG(Y )

εX−−→ Y

for objects X of C and Y of D and a homomorphism f : X → G(Y ) in D.

Example 4.11. In the monoidal category End(D) of endofunctors of a category D, a left dual of a
functor F : D → D is the same as a left adjoint of F , and a right dual is the same as a right adjoint.

Lemma 4.12. If an object X of C has a left dual X∗ then there are adjunctions

−⊗X a − ⊗X∗ and X∗ ⊗− a X ⊗−.

In particular, for objects Y and Z of C, there are isomorphisms

HomC(Y ⊗X,Z)→ HomC(Y, Z ⊗X∗) and HomC(X
∗ ⊗ Y,Z)→ HomC(Y,X ⊗ Z)

which are natural in Y and Z.

Proof. The unit and the counit of the adjunction −⊗X a − ⊗X∗ are given by

εY : (Y ⊗X∗)⊗X
αY,X∗,X−−−−−→ Y ⊗ (X∗ ⊗X)

idY ⊗evX−−−−−−→ Y

and

ηY : Y
coevX⊗idY−−−−−−−→ (X ⊗X∗)⊗ Y

α−1
X,X∗,Y−−−−−→ X ⊗ (X∗ ⊗ Y ).

The zig-zag relations for ε and η follow from the zig-zag-relations for the evaluation and coevaluation,
and the first isomorphism between Hom-sets is immediate from Remark 4.10. The second adjunction
and isomorphism of Hom-sets are obtained analogously.
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Example 4.13. Consider the category AbGrp = Z −Mod of abelian groups (or Z-modules), with
the usual tensor product ⊗ = ⊗Z over Z and the unit object Z. Observe that for any two abelian
groups A and B, the set HomZ(A,B) can be considered as an abelian group via pointwise addition,
and that HomZ(Z, A) ∼= A (by evaluation at 1 ∈ Z). If the group A = Z/3Z has a left dual A∗ then

A∗ ∼= HomZ(Z, A∗) ∼= Hom(A,Z) = 0

by Lemma 4.12, contradicting the zig zag relations. Hence Z/3Z does not admit a left dual in AbGrp.

Remark 4.14. Before we continue discussing duals, some reminders about category theory are in
order. Given two categories C and D, a functor F : C → D is called faithful (or full) if the map

HomC(X,Y )
f 7→F (f)−−−−−→ HomD

(
F (X), F (Y )

)
is injective (respectively surjective). The functor F is called fully faithful if it is full and faithful, and
it is called essentially surjective if for every object Y of D, there exists an object X of C such that
F (X) ∼= Y . One can show that a functor is fully faithful and essentially surjective if and only if it is
an equivalence.

Now for every object X of C, we have a functor

HomC(X,−) : C −→ Set

and for a homomorphism f : X → Y in C, there is a natural transformation

Hom(f,−) : HomC(Y,−)→ HomC(Y,−)

with components
Hom(f, Z) : HomC(Y,Z)→ HomC(X,Z), g 7→ g ◦ f.

These data give rise to a functor
Crev −→ Fun(C,Set)

which is fully faithful by Yoneda’s lemma. In particular, given two objects X and Y of C such that the
functors HomC(X,−) and HomC(Y,−) are naturally isomorphic, there exists an isomorphism X ∼= Y
in C.

Remark 4.15. Using Lemma 4.12, we can give an alternative proof of Lemma 4.4: For an element
X of C with two left duals X∗1 and X∗2 , there is a natural isomorphism

HomC(X
∗
1 ,−) ∼= HomC(1, X ⊗−) ∼= HomC(X

∗
2 ,−),

and Yoneda’s lemma implies that X∗1
∼= X∗2 .

Definition 4.16. Assume that X and Y are objects of C that have left duals and let f : X → Y be
a homomorphism. The left dual of f is the homomorphism

f∗ : Y ∗
idY ∗⊗coevX−−−−−−−−→ Y ∗⊗ (X⊗X∗)

α−1
Y ∗,X,X∗−−−−−−→ (Y ∗⊗X)⊗X∗ idY ∗⊗f⊗idX∗−−−−−−−−−→ (Y ∗⊗Y )⊗X∗ evY ⊗idX∗−−−−−−→ X∗

If X and Y have right duals then one similarly defines the right dual ∗f : ∗Y → ∗X.

Remark 4.17. Assume that X and Y are objects of C with left duals, and let f : X → Y be a
homomorphism. Then there is a commutative square
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HomC(X
∗,−) HomC(Y

∗,−)

HomC(1, X ⊗−) HomC(1, Y ⊗−)

g 7→ g ◦ f∗

∼ ∼

g 7→ (f ⊗ id) ◦ g

where the vertical arrows are given by Remark 4.15. By Yoneda’s lemma, f∗ is the unique homomor-
phism from Y ∗ to X∗ that makes this diagram commute.

Lemma 4.18. Let X, Y and Z be objects of C that have right duals. For homomorphisms f : X → Y
and g : Y → Z, we have (g ◦ f)∗ = f∗ ◦ g∗.

Proof. This follows from Remark 4.17 and the commutativity of the diagram

HomC(X
∗,−) HomC(Y

∗,−) HomC(Z
∗,−)

HomC(1, X ⊗−) HomC(1, Y ⊗−) HomC(1, Y ⊗−)

h 7→ h ◦ f∗ h 7→ h ◦ g∗

∼ ∼ ∼

h 7→ (f ⊗ id) ◦ h h 7→ (g ⊗ id) ◦ h

h 7→ h ◦ (f∗ ◦ g∗)

h 7→
(
(g ◦ f)⊗ id

)
◦ h

where the vertical arrows are given by Remark 4.15.

Corollary 4.19. If every object X in C has a left dual X∗ then there is a contravariant left duality
functor (−)∗ : Crev → C with X 7→ X∗ and f 7→ f∗ for all objects X and all homomorphisms f
in C. Analogously, if every object X in C has a right dual ∗X then there is a right duality functor
∗(−) : Crev → C.

Proof. This follows from Lemmas 4.4 and 4.18.

Remark 4.20. Suppose that all objects in C have right duals. Then the right duality functor canon-
ically defines a monoidal functor

(
(−)∗, ϕ, ε

)
: Crev → Cop. This follows from Lemmas 4.4 and 4.7 and

the fact that (f ⊗g)∗ = g∗⊗f∗ for homomorphisms f and g in C. (This fact can be proven by arguing
as in Lemma 4.18.)

Definition 4.21. A monoidal category C is called rigid if every object X has a right dual X∗ and a
left dual ∗X.

Remark 4.22. In a rigid monoidal category, the left duality functor is an equivalence and its quasi-
inverse is the right duality functor by Lemma 4.6.

The name rigid is justified by the following lemma:

Lemma 4.23. Let C and D be rigid monoidal categories and let (F,ϕ, ε) and (G,ϕ′, ε′) be monoidal
functors from C to D. Further let u : F → G be a monoidal natural transformation. Then u is a
natural isomorphism.

Proof. The proof will be given in the exercises.
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5 Braided monoidal categories

Definition 5.1. A braiding on C is a natural isomorphism β : −⊗− → −⊗op− (i.e. with components
βA,B : A ⊗ B → B ⊗ A) that satisfies the hexagon axiom, that is, such that the following diagrams
commute for all objects A,B,C of C:

A⊗ (B ⊗ C)

A⊗ (C ⊗B) (A⊗ C)⊗B

(C ⊗A)⊗B

(A⊗B)⊗ C C ⊗ (A⊗B)

idA ⊗ βB,C

αA,C,B

βA,C ⊗ idB

αA,B,C

βA⊗B,C

αC,A,B

(A⊗B)⊗ C

(B ⊗A)⊗ C B ⊗ (A⊗ C)

B ⊗ (C ⊗A)

A⊗ (B ⊗ C) (B ⊗ C)⊗A

βA,B ⊗ idC

α−1B,A,C

idB ⊗ βA,C

α−1A,B,C

βA,B⊗C

α−1B,C,A

A braided monoidal category is a pair (C, β), where C is a monoidal category and β is a braiding.

Example 5.2. (1) The category Set with the monoidal structure by Cartesian product admits a
braiding β with βX,Y : X × Y → Y ⊗X given by (x, y) 7→ (y, x) for sets X and Y .

(2) The category k −Vect of vector spaces over a field k with the ordinary tensor product has a
braiding β with βX,Y : X ⊗ Y → Y ⊗X determined by x⊗ y 7→ y⊗ x for k-vector spaces X and
Y and x ∈ X, y ∈ Y .

Lemma 5.3. In a braided monoidal category (C, β), we have

λX = ρX ◦ β1,X , ρX = λX ◦ βX,1 and β1,X = β−1
X,1

for all objects X of C. In other words, the following diagrams commute:

X ⊗ 1 1⊗X

X

1⊗X X ⊗ 1

X

βX,1

ρX λX

β1,X

λX ρX

Proof. Using the hexagon axiom, the naturality of β and the unitors, and the coherence theorem (see
Theorem 3.5), we get the following commutative diagram:
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1⊗ (1⊗X)

1⊗ (X ⊗ 1) (1⊗X)⊗ 1

(X ⊗ 1)⊗ 1

(1⊗ 1)⊗X X ⊗ (1⊗ 1)

1⊗X X ⊗ 1

X ⊗ 1 1⊗X

X

id1 ⊗ β1,X

α1,X,1

β1,X ⊗ id1

α1,1,X

β1⊗1,X

αX,1,1

β1,X

λ1 ⊗ idX idX ⊗ λ1

λ1⊗X ρX⊗1

β1,X βX,1

λX⊗1 ρ1⊗X

ρX λX

This implies that we have
β1,X = βX,1 ◦ λ−1

X ◦ ρX ◦ β1,X

and therefore λX ◦ β−1
X,1 = ρX . The equations ρX ◦ βX,1 = λX and β1,X = β−1

X,1 can be proven
analogously.

Lemma 5.4. Let C be a strict monoidal category and let β be a braiding on C. Then C satisfies the
braid relations, that is, for objects X,Y, Z of C, we have

(βY,Z ⊗ idX) ◦ (idY ⊗ βX,Z) ◦ (βX,Y ⊗ idZ) = (idZ ⊗ βY,X) ◦ (βX,Z ⊗ idY ) ◦ (idX ⊗ βY,Z).

Proof. Since C is strict, the diagrams in the hexagon axiom become triangles, and by naturality of the
braiding, we obtain the following commutative diagram:

X ⊗ Z ⊗ Y

X ⊗ Y ⊗ Z Y ⊗X ⊗ Z

Y ⊗ Z ⊗X

Z ⊗X ⊗ Y Z ⊗ Y ⊗X

idX ⊗ βY,Z

βX,Z ⊗ idY

βX⊗Y,Z

βX,Y ⊗ idZ

idZ ⊗ βX,Y

idY ⊗ βX,Z

βY,Z ⊗ idX

βY⊗X,Z

The braid relation can be read off along the perimeter of the diagram.

Remark 5.5. The braid relations can be depicted by the following diagram:
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X Y Z

Z Y X

=

X Y Z

Z Y X

Remark 5.6. Recall from Theorem 3.3 that every monoidal category is equivalent to a strict monoidal
category. This (or a more elaborate version of the argument in the proof of Lemma 5.4) can be used
to prove a version of the braid relations for non-strict monoidal categories.

Definition 5.7. A braiding β on C is called symmetric if it satisfies βY,X ◦ βX,Y = idX⊗Y for all
objects X,Y of C. A symmetric monoidal category is a braided monoidal category with a symmetric
braiding β.

Example 5.8. Let G be a group and A an abelian group, and suppose that CGA admits a braiding.
Then we have

δgh = δg ⊗ δh ∼= δh ⊗ δg ∼= δhg

for all g, h ∈ G, so gh = hg and G is abelian. A braiding β : −⊗− → −⊗op − on CGA is the same as
a collection

A 3 βg,h : δgh = δg ⊗ δh −→ δh ⊗ δg ∼= δhg

satisfying the hexagon axiom, i.e. a map β : G×G→ A such that

β(g, k) · β(h, k) = β(gh, k) and β(g, h) · β(g, k) = β(g, hk)

for g, h, k ∈ G. In other words, a braiding on CGA is the same as a Z-bilinear map β : G×G→ A. The
braiding is symmetric if and only if β(g, h) · β(h, g) = e for all g, h ∈ G.

For a field k one similarly finds that VectGk admits a braiding if and only if G is abelian, and that
every braiding corresponds to a choice of Z-bilinear map G×G −→ k×.

Now suppose that G = Z/nZ = {0, 1, · · · , n− 1} is the cyclic group of order n. For an n-th root
of unity ζ ∈ k×, we can define a biliear map β : G×G −→ k× via

β(a, b) = ζa·b.

For n = 2 and ζ = −1, the resulting braided monoidal category

SVectk =
(
Vect

Z/2Z
k , β

)
is called the category of super k-vector spaces. It is straightforward to see that SVectk is a symmetric
monoidal category.

Definition 5.9. A braided monoidal functor between braided monoidal categories (C, β) and (D, β′)
is a monoidal functor (F,ϕ, ε) : C → D such that for all objects X,Y of C, the following diagram
commutes:

F (X ⊗ Y ) F (X)⊗ F (Y )

F (Y ⊗ F (X)) F (Y )⊗ F (X)

γX,Y

F (βX,Y ) β′F (X),F (Y )

γY,X

If (C, β) and (D, β′) are symmetric then we call (F,ϕ, ε) a symmetric monoidal functor.
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Intermission

At this point, let us pause for a while to contemplate what we have learned so far and explain the
contents of the following sections. Up to this point, we have seen the definitions of monoidal categories,
duals and braidings and studied some of their most important properties (strictness and coherence,
behavior of duals under monoidal functors, braid relations, etc...). One key example of a monoidal
category that is both rigid and braided is the category Repk(G) of representations of a field k. For
the rest of this course, we will essentially be concerned with the question what hypotheses we need
to impose on a (monoidal) category in order for it to be (monoidally) equivalent to the category of
representations of a group, or some other algebraic object. As a first step, let us fix some algebraic
object B and list some properties of the category of (finite-dimensional) modules (or representations)
of B that would have to be shared by any category that is equivalent to the latter.

(1) The set of homomorphisms between to B-modules has a canonical k-vector space structure and
composition of homomorphisms is k-linear.

(2) We can form the direct sum of finitely many B-modules, and there is a zero B-module {0}.

(3) We can consider subobjects and quotients of B-modules, and for a homomorphism of B-modules,
the kernel and cokernel are also B-modules.

(4) There is a ‘forgetful functor’, i.e. a functor that assigns to every representation the underlying
vector space.

The points above can be stated more abstractly as saying that any category that is equivalent to
a category of representations should be (1) k-linear, (2) additive, (3) abelian and should (4) admit
a fiber functor. All of these terms will be defined below, and as we will see later every category
A that satisfies (1)–(4) is equivalent to the category of comodules over a coalgebra C. (These are
dual concepts of the notions of algebras and modules.) If the category A is also k-linearly monoidal
(a tensor category) and F is a monoidal functor then we can endow C with an algebra structure
that is compatible with the coalgebra structure, thus making C a bialgebra. This gives rise to a
bijection between tensor categories with fiber functors (up to equivalence) and bialgebras (up to
isomorphism), and every additional structure on the tensor category (e.g. rigidity, braiding) gives rise
to an additional structure on the bialgebra (e.g. antipode, R-matrix). In the special case of a rigid
symmetric monoidal category, we will see that the extra structure that we get on the bialgebra allows
us to define a group scheme whose category of representations recovers the abelian category that we
started from. Finally, we will turn to C-linear abelian rigid symmetric monoidal categories and discuss
a theorem of P. Deligne, which states that a very mild assuption on the growth of tensor powers (with
respect to the length of a composition series) is equivalent to the existence of a super fiber functor
(whose codomain is the category SVectC of super C-vector spaces, instead of the category VectC). By
analogy with the above discussion, this implies that every C-linear abelian rigid symmetric monoidal
category which satisfies the aforementioned growth-assumption is monoidally equivalent to a category
of representations of a super group scheme.

6 Monoids and comonoids

As before, we fix a monoidal category C. We will mostly suppress associativity constraints and unitors
from the notation, for the sake of simplicity.

Definition 6.1. (1) A monoid in C is an object M with homomorphisms

µ : M ⊗M −→M and η : 1 −→M,

22



called multiplication and unit, such that

µ ◦ (idM ⊗ µ) = µ ◦ (µ⊗ idM ) and µ ◦ (idM ⊗ η) = idM = µ ◦ (η ⊗ idM ).

A homomorphism between monoids (M,µ, η) and (M ′, µ′, η′) is a homomorphism f : M → M ′

in C such that f ◦ µ = µ′ ◦ (f ⊗ f) and f ◦ η = η′.

(2) A comonoid in C is an object C with homomorphisms

δ : C −→ C ⊗ C and ε : C −→ 1

called comultiplication and counit, such that

(idC ⊗ δ) ◦ δ = (δ ⊗ idC) ◦ δ and (idC ⊗ ε) ◦ δ = idC = (ε⊗ idC) ◦ δ.

A homomorphism between comonoids (C, δ, ε) and (C ′, δ′, ε′) is a homomorphism g : C → C ′ in
C such that δ′ ◦ g = (g ⊗ g) ◦ δ and ε′ ◦ g = ε.

Example 6.2. (1) A monoid in the category Vect∞k of (possibly infinite-dimensional) vector spaces
is the same as a k-algebra. A comonoid in Vect∞k is called a coalgebra. For every finite-
dimensional algebra (A,µ, η), the dual space A∗ is a coalgebra with comultiplication and counit
given by

δ = µ∗ : A∗ → (A⊗A)∗ ∼= A∗ ⊗A∗ and ε = η∗ : A∗ → k∗ ∼= k.

Similarly, the dual of a finite-dimensional coalgebra has a canonical algebra structure.

(2) Given two k-algebras A and B (or k-coalgebras C and D), the tensor product A⊗B (or C⊗D)
over k becomes a k-algebra (or k-coalgebra) with multiplication (or comultiplication)

A⊗B ⊗A⊗B
idA⊗sB,A⊗idB−−−−−−−−−−−→ A⊗A⊗B ⊗B µA⊗µB−−−−−−→ A⊗B,

C ⊗D δC⊗δD−−−−−→ C ⊗ C ⊗D ⊗D
idC⊗sC,D⊗idD−−−−−−−−−−−→ C ⊗D ⊗ C ⊗D,

where s denotes the symmetric braiding on Vect∞k . This endows the category Algk of k-
algebras (or Coalgk of k-coalgebras) with a monoidal structure. A comonoid in Algk is called
a bialgebra. In other words, a bialgebra is an algebra which is also a coalgebra, in such a way
that the comultiplication and the counit are homomorphisms of algebras. Equivalently, we could
require that the multiplication and unit are homomorphisms of coalgebras, so a bialgebra can
also be defined as a monoid in Coalgk.

More generally, if C has a braiding β then we can use β to define tensor products of monoids or
comonoids in C. A bimonoid in C is a comonoid in the category of monoids in C or (equivalently)
a monoid in the category of comonoids in C.

(3) Let Cat be the category of small categories (i.e. categories where the objects form a set), and
regard Cat as a monoidal category, with tensor product defined by the product of categories
from Remark 1.5. Then a monoid in Cat is the same as a strict monoidal category.

Lemma 6.3. Let C and D be monoidal categories, (F,ϕ, ε) : C → D a monoidal functor and (A,µ, η)
a monoid in C. Then F (A) becomes a monoid in D via

F (A)⊗ F (A)
ϕA,A−−−→ F (A⊗A)

F (µ)−−−→ F (A) and 1D
ε−1

−−→ F (1C)
F (η)−−−→ F (A).
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Definition 6.4. (1) A left module over a monoid (A,µ, η) in C is an object M of C with a homo-
morphism a : A⊗M →M such that

a ◦ (µ⊗ idM ) = a ◦ (idA ⊗ a) and a ◦ (η ⊗ idM ) = idM .

A homomorphism between left modules (M,a) and (M ′, a′) is a homomorphism f : M →M ′ in
C such that f ◦ a = a′ ◦ (f ⊗ idA).

(2) A left comodule over a comonoid (C, δ, ε) in C is an object N of C with a homomorphism
c : N → C ⊗N such that

(δ ⊗ idN ) ◦ c = (idC ⊗ c) ◦ c and (ε⊗ idN ) ◦ c = idN .

A homomorphism between left comodules (N, c) and (N ′, c′) is a homomorphism g : N → N ′ in
C such that (f ⊗ idC) ◦ c = c′ ◦ f .

Remark 6.5. For a finite-dimensional algebra A and a finite-dimensional A-module (M,a), the dual
space M∗ is a comodule over the coalgebra A∗, with coaction given by

c = a∗ : M∗ −→ (A⊗M)∗ ∼= A∗ ⊗M∗.

This gives rise to an equivalence between the opposite category (A − mod)op of the category of
finite-dimensional A-modules and the category A∗ − comod of finite-dimensional A∗-comodules.

Remark 6.6. Let (B,µ, η, δ, ε) be a bialgebra and let M and N be B-modules. Then the tensor
product M ⊗N over k becomes a B ⊗B-module via

B ⊗B ⊗M ⊗N
idA⊗sB,M⊗idN−−−−−−−−−−−→ B ⊗M ⊗B ⊗N aM⊗aN−−−−−−→M ⊗N,

and since the comultiplication δ : B → B ⊗B is an algebra homomorphism, we can view M ⊗N as a
B-module (with b · (m⊗ n) = δ(b) · (m⊗ n) for b ∈ B, m ∈M and n ∈ N). Furthermore, the counit
ε : B → k allows us to view the one-dimensional vector space k as a B-module, called the trivial
B-module. This endows the category B − mod of finite-dimensional B-modules with a monoidal
structure. (The associativity constraint is defined using the coassociativity of δ and the unitors are
defined using the counitality of ε.) Similarly, we can define a comodule structure on the tensor product
of two B-comodules and endow the one-dimensional vector space k with a B-comodule structure (via
the unit η of B). This endows the category B − comod of finite dimensional left B-comodules with
a monoidal structure.

In the following, we will mostly work with coalgebras and comodules rather than algebras and
modules. The reason for this choice is that the former are more well-behaved in a number of ways, as
witnessed by the following result (know as the fundamental theorem of comodules and coalgebras):

Theorem 6.7. Let (C, δ, ε) be a coalgebra over k. Then every C-comodule is the union of its finite-
dimensional sub-comodules. Further more, C is the union of its finite-dimensional sub-coalgebras

Proof. Let N be a C-comodule with coaction map c : N → C ⊗N . The first claim follows if we prove
that every element n ∈ N is contained in a finite dimensional sub-comodule of N . Since a choice of
bases for C and N affords a basis for C ⊗ N (by taking tensor products of basis vectors), there are
elements c1, . . . , cr ∈ C and n1, . . . , nr ∈ N such that c(n) = c1 ⊗ n1 + · · · + cr ⊗ nr. In particular,
there is a finite-dimensional subspace N ′ = 〈n1, . . . , nr〉k of N such that c(n) ∈ C ⊗ N ′. We claim
that M := c−1(C ⊗N ′) is a finite-dimensional sub-comodule of N . Indeed, we have

c−1(C ⊗N ′) ⊆ c−1
(
(ε⊗ idN )−1(N ′)

)
=
(
(ε⊗ idN ) ◦ c

)−1
(N ′) = N ′
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whence M is finite-dimensional. Furthermore, if we regard C ⊗N as a C-comodule with coaction

c′ = δ ⊗ idV : C ⊗N −→ C ⊗ C ⊗N

then the coaction c : N → C ⊗N is a homomorphism of comodules and C ⊗N ′ is a sub-comodule of
C ⊗N ; hence M = c−1(C ⊗N ′) is a subcomodule of N .

Next note that C can be regarded as a comodule over Cop ⊗ C, where Cop is the coalgebra with
underlying vector space C and comultiplication δop = sC,C ◦ δ. Then a C ⊗Cop-comodule of C is the
same as a sub-coalgebra of C, so the second claim follows from the first.

7 Linear and abelian categories

Definition 7.1. Let R be a commutative ring. An R-linear category is a category such that all
Hom-sets are equipped with an R-module structure and composition of homomorphisms is R-bilinear.
An R-linear functor between R-linear categories C and D is a functor F : C → D such that the maps

HomC(X,Y )
f 7→F (f)−−−−−−→ HomD

(
F (X), F (Y )

)
are R-linear, for all objects A and B of A.

Example 7.2. (1) For a commutative ring R, the category R−Mod is R-linear. In particular, the
category AbGrp = Z−Mod of abelian groups (or Z-modules) is Z-linear.

(2) For a field k and a group G, the categories Vectk, VectGk and Repk(G) are k-linear.

(3) A Z-linear category is also called pre-additive.

(4) An R-linear category C with a monoidal structure such that ⊗ is R-bilinear on Hom-sets, i.e.
such that the maps

HomC(X,Y )×HomC(X
′, Y ′)

(f,g)7→f⊗g−−−−−−−−→ HomC(X ⊗X ′, Y ⊗ Y ′)

are R-bilinear for all objects X,Y,X ′, Y ′ of C, is called R-linearly monoidal.

Definition 7.3. Let (Xi)i be a family of objects of C.

(1) A product of (Xi)i, if it exists, is an object X =
∏
iXi of C with homomorphisms πi : X → Xi

(called projections) such that for every object Z of C with homomorphisms fi : Z → Xi, there
exists a unique homomorphism f : Y → Z such that πi ◦ f = fi.

Z

X Xi

f
fi

πi

(2) A coproduct of (Xi)i, if it exists, is an object Y =
∐
iXi of C with homomorphisms ιi : Xi → Y

(called inclusions) such that for every object Z of C with homomorphisms gi : Xi → Z, there
exists a unique homomorphism g : Y → Z such that g ◦ ιi = gi.
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Y

Z

Xi

g

ιi

gi

Example 7.4. (1) In the category Set, the product is the cartesian product and the coproduct is
the disjoint union.

(2) In Vect∞k , the product of (Vi)i is the direct product (i.e. the set of I-tuples (vi)i with vi ∈ Vi
and pointwise addition and scalar multiplication) and the coproduct is the direct sum (i.e. the
subspace of the product consisting of the I-tuples (vi)i where vi is zero for all but finitely many
i ∈ I). In particular, finite products and coproducts coincide in Vect∞k (and in Vectk).

Remark 7.5. The universal property of coproducts implies that for any family (Xi)i such that the
coproduct

∐
iXi exists and for an object Y of C, we have

HomC
(∐

i
Xi, Y

) ∼= ∏
i

HomC(Xi, Y ).

In particular, in the category Vect∞k , we have canonically

Homk
(⊕

i
Xi, Y

) ∼= ∏
i

Homk(Xi, Y ) and
(⊕

i
Xi

)∗ ∼= ∏
i

X∗i .

Definition 7.6. A pre-additive category A is called additive if all finite products exist in A.

Example 7.7. The categories AbGrp, Vectk, A−mod, Repk(G) and VectGk are all additive.

Remark 7.8. Let A be an additive category.

(1) Finite products and coproducts coincide in A. (We could equivalently define an additive category
as a pre-additive category having all finite coproducts.)

(2) We can form the empty product (or coproduct) in A, which we call the zero object and denote
by 0. Using the universal property of products and coproducts, one sees that for every object A
of A, there is a unique homomorphism 0: 0 → A and a unique homomorphism 0: A → 0. For
every pair of objects A,B of A, the zero homomorphism in the abelian group HomA(A,B) is
the composition A→ 0→ B.

Remark 7.9. While being pre-additive is an extra structure on a category, being additive is a property:
For a category C in which all finite products and coproducts exist, the empty product is a final object
and the empty coproduct is an initial object. Suppose that the unique hommorphism from the empty
coproduct to the empty product is an isomorphism, and call the resulting initial and final object the
zero object 0 of C. Then for all objects X,Y of C the canonical homomorphisms

X q Y idXq0−−−−→ X q 0 ∼= X and X q Y 0qY−−−→ 0q Y ∼= Y

give rise to a homomorphism XqY → XΠY via the universal property of the product, and we further
assume that the latter is an isomorphism for all X,Y . Then we can define a commutative monoid
structure on HomC(X,Y ) as follows: Using the universal properties of product and coproduct, we can
define a diagonal embedding X → XΠX and a diagonal projection YΠY ∼= Y qY → Y , and the sum
of two homomorphisms f, g ∈ HomC(X,Y ) is defined as the composition

f + g : X −→ XΠX
fΠg−−→ YΠY −→ Y.
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Now one can show that C is additive if and only if the commutative monoid HomC(X,Y ) is a group for
all objects X,Y of C. In summary, a category is additive if and only if all finite products and coproducts
exist, the empty product is isomorphic to the empty coproduct, the canonical homomorphism from
the coproduct to the product is an isomorphism and every homomorphism has an inverse with respect
to the addition on Hom-sets defined above.

Definition 7.10. Let A be a category, let A and B be objects of A and let f : A→ B and g : A→ B
be two homomorphisms in A.

(1) The equalizer eq(f, g) = (E, e) of f and g, if it exists, is an object E with a homomorphism
e : E → A with f ◦ e = g ◦ e such that for every object E′ of A and homomorphism e′ : E′ → A
with f ◦ e′ = g ◦ e′, there is a unique homomorphism u : E′ → E such that e′ = e ◦ u.

E A B

E′

e
f

g

e′
u

(2) The coequalizer coeq(f, g) = (C, c) of f and g, if it exists, is an object C with a homomorphism
c : B → C with c ◦ f = c ◦ g such that for every object C ′ of A and homomorphism c′ : B → C ′

with c′ ◦ f = c′ ◦ g, there is a unique homomorphism u : C → C ′ such that c′ = u ◦ c.

CA B

C ′

c
f

g

c′
u

(3) If A is additive and f : A→ B is a homomorphism in A then the kernel (or cokernel) of f , if it
exists, is the equalizer (or coequalizer)

ker(f) = eq(f, 0), cok(f) = coeq(f, 0)

of f and 0: A→ B.

Remark 7.11. Using the universal properties of the equalizer and the coequalizer, it is straight-
forward to derive the following universal properties of the kernel and the cokernel: The kernel of a
homomorphism f : A→ B in an additive category A is an object K with a homomorphism k : K → A
such that f ◦ k = 0, and such that for every object K ′ with a homomorphism k′ : K ′ → A such that
f ◦ k′ = 0, there is a unique homomorphism u : K → K ′ such that k′ = k ◦ u.

K A B

K ′

k f

k′
u

0

0
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Dually, the cokernel c : Y → C = cok(f) of f , if it exists, is defined by the universal property displayed
in the following diagram:

A B C

C ′

f c

c′
u

0

0

Definition 7.12. An additive category is called pre-abelian if every homomorphism has a kernel and
a cokernel.

Definition 7.13. A homomorphism f : X → Y in a category C is called a monomorphism (or an
epimorphism) if for every two homomorphisms g1, g2 : W → X (or h1, h2 : Y → Z), the equality
f ◦ g1 = f ◦ g2 implies that g1 = g2 (or h1 ◦ f = h2 ◦ f implies h1 = h2).

Definition 7.14. An abelian category is a pre-abelian category such that

(1) for every monomorphism i : X → Y , there is a homomorphism f : Y → Z with ker(f) = (X, i);

(2) for every epimorphism p : V →W , there is a homomorphism g : U → V with cok(g) = (W,p).

Remark 7.15. Intuitively, one should think of an abelian category as one where it is possible to
carry out all of the homological constructions that we know from categories of modules over algebras.
For example, we have subobjects, quotient objects, simple objects, (short) exact sequences, the snake
lemma, the Jordan-Hölder theorem, etc.

Concretely, a short exact sequence in an abelian category A is a sequence of homomorphisms

A
f−−→ B

g−−→ C

such that (A, f) = ker(g) and (C, g) = cok(f).)

Definition 7.16. A functor F : A → B between abelian categories is called exact if it is additive (i.e.
Z-linear) and if for every short exact sequence

A
f−−→ B

g−−→ C

in A, the sequence

F (A)
F (f)−−−−→ F (B)

F (g)−−−−→ F (C)

in B is exact.

Definition 7.17. Let A be a k-linear abelian category. A fiber functor for A is an exact faithful
k-linear functor F : A → Vectk.

Definition 7.18. An abelian category A is called artinian (or noetherian) if every descending chain
X0 ←↩ X1 ←↩ · · · (or ascending chain X0 ↪→ X1 ↪→ · · · ) of subobjects of an object X of A stabilizes.

Lemma 7.19. Let A be a k-linear abelian category with a fiber functor F : A → Vectk. Then A is
artinian and noetherian.

Proof. For a chain X0 ↪→ X1 ↪→ · · · of subobjects of X ∈ Ob(C), the chain F (X0) ↪→ F (X1) ↪→ · · ·
stabilizes since F (X) is finite-dimensional; say F (Xi) = F (Xi+1) = · · · . As F is exact, we have

F (Xj+1/Xj) ∼= F (Xj+1)/F (Xj) = 0

for all j ≥ i, whence Xj+1/Xj = 0 because F is faithful, and so Xi = Xi+1 = · · · . This proves that A
is noetherian; the fact that A is artinian can be proven analogously.
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8 Coend and reconstruction for abelian categories

Unless otherwise stated, in this section C denotes a (not necessarily monoidal) small category, k denotes
a field and F : C → Vectk denotes a functor.

Example 8.1. Let A be a k-algebra and let F : A−Mod→ Vect∞k be the functor that sends an A-
module to the underlying vector space. There is an isomorphism of functors F ∼= HomA(A,−), where
we consider A as an A-module via left multiplication, and so Yoneda’s lemma gives an isomorphism
of k-algebras

A ∼= EndA(A)op ∼= End
(
HomA(A,−)

) ∼= End(F ).

In other words, the algebra A can be reconstructed from F (by taking the endomorphism algebra).

Remark 8.2. Let C be a small category and let F : C → Vectk be a functor to the category of finite-
dimensional vector spaces, for some field k. Then the natural endomorphisms of F can be considered
as a subspace of the product

∏
X∈Ob(C) Endk

(
F (X)

)
, consisting of the elements (ϑX)X∈Ob(C) such that

for every homomorphism f : X → Y in C, we have ϑY : F (f) = F (f) ◦ ϑY .
Another way of putting this is as follows: For a homomorphism f : Y → Z ∈ C, we can define a

two k-linear maps

af :
∏
X

Endk
(
F (X)

)
−→ Hom

(
F (Y ), F (Z)

)
, (eX)X 7−→ F (f) ◦ eY ,

bf :
∏
X

Endk
(
F (X)

)
−→ Hom

(
F (Y ), F (Z)

)
, (eX)X 7−→ eZ ◦ F (f),

and by the universal property of the product, there are two unique k-linear maps

a :
∏
X

Endk
(
F (X)

)
−→

∏
f : Y→Z

Homk
(
F (Y ), F (Z)

)
b :
∏
X

Endk
(
F (X)

)
−→

∏
f : Y→Z

Homk
(
F (Y ), F (Z)

)
such that πf ◦a = af and πf ◦b = bf for all f : Y → Z, where πf denotes the projection. Then End(F )
is the equalizer of a and b, i.e. the largest subspace i : E ↪→

∏
X Endk

(
F (X)

)
such that a ◦ i = b ◦ i.

For ease of notation, let us from now on write EX = Endk
(
F (X)

)
for all objects X of C.

Remark 8.3. Let C be a small category and let F : C → Vectk be a functor. We construct a coalgebra
End∨(F ), called the Coend of F , by dualizing the construction of End(F ) in Remark 8.2. First, for a
homomorphism f : Y → Z in C, consider the k-linear maps

af : Homk
(
F (Z), F (Y )

)
−→

⊕
X

EX , g 7→ F (f) ◦ g,

bf : Homk
(
F (Z), F (Y )

)
−→

⊕
X

EX , g 7→ g ◦ F (f).

By the universal property of the coproduct, there are two unique k-linear maps

a :
⊕

f : Y→Z
Homk

(
F (Z), F (Y )

)
−→

⊕
X

EX ,

b :
⊕

f : Y→Z
Homk

(
F (Z), F (Y )

)
−→

⊕
X

EX ,

such that a ◦ if = af and b ◦ if = bf for f : Y → Z, where if denotes the embedding. Then End∨(F )
is the coequalizer of a and b, i.e. the largest quotient q :

⊕
X EX → C such that q ◦ a = q ◦ b. For an

object X of C and ϕ ∈ EX , let us write qX = q ◦ iX and [ϕ] = qX(ϕ), where iX denotes the embedding
of EX into

⊕
X EX .
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Lemma 8.4. There is an isomorphism End∨(F )∗ ∼= End(F ).

Proof. This follows from the facts that duals of direct sums are direct products (cf. Remark 7.5) and
that duals of coequalizers are equalizers.

Remark 8.5. For a finite-dimensional k-vector space V , there is a canonical identification

Endk(V ) ∼= V ⊗ V ∗ ∼= V ∗ ⊗ V.

Using the first isomorphism, the k-algebra structure on Endk(V ) can be defined via

µ : V ⊗ V ∗ ⊗ V ⊗ V ∗ idV ⊗evV ⊗idV−−−−−−−−−→ V ⊗ V ∗ and η : k coevV−−−−→ V ⊗ V ∗.

Similarly, we can define a k-coalgebra structure on Endk(V ) ∼= V ∗ ⊗ V via

δ : V ∗ ⊗ V idV ⊗coevV ⊗idV−−−−−−−−−−→ V ∗ ⊗ V ⊗ V ∗ ⊗ V and η : V ∗ ⊗ V evV−−→ k.

Observe that η can also be identified with the trace map on Endk(V ). This coalgebra structure is dual
to the algebra structure on Endk(V ) under the canonical isomorphism

Endk(V )∗ ∼= (V ∗ ⊗ V )∗ ∼= V ∗ ⊗ V ∗∗ ∼= V ∗ ⊗ V ∼= Endk(V ).

For X ∈ Ob(C), we write δX and εX for the comultiplication and the counit of EX = Endk
(
F (X)

)
.

Proposition 8.6. There are linear maps

δ : End∨(F ) −→ End∨(F )⊗ End∨(F ) and ε : End∨(F ) −→ k,

unique with the property that the following diagrams commute for all objects X of C:

EX EX ⊗ EX

End∨(F ) End∨(F )⊗ End∨(F )

δX

qX qX ⊗ qX

δ

EX

End∨(F )

k

εX

ε

qX

Proof. For an oject X of C, consider the linear map

δX := (qX ⊗ qX) ◦ δX : EX −→ End∨(F )⊗ End∨(F ).

By the universal property of the coproduct, there is a unique linear map

δ0 :
⊕

X
EX −→ End∨(F )⊗ End∨(F )

such that δ0 ◦ iX = δX for every object X of C. We claim that δ0 ◦ a = δ0 ◦ b (in the notation of
Remark 8.3), so that there is a unique linear map

δ : End∨(F ) −→ End∨(F )⊗ End∨(F )

with δ ◦q = δ0. (Note that this implies δ ◦qX = δ ◦q ◦ iX = δ0 ◦ iX = δX = (qX⊗qX)◦δX , as required.)
Indeed, let f : X → Y be a homomorphism in C and fix bases (ei)i and (fj)j of F (X) and F (Y ),

respectively, with dual bases (e∗i )i and (f∗j )j . Then, with F (f)i,j := f∗j ◦ F (f)(ei), we can write

F (f) =
∑
i,j

F (f)i,j · e∗i ⊗ fj ,
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and by the definition of End∨(F ), we have for all k, ` the following equality, where we implicitly use
the canonical isomorphism Homk

(
F (Y ), F (X)

) ∼= F (Y )∗ ⊗ F (X):[∑
i
F (f)i,k · e∗i ⊗ e`

]
= [(f∗k ⊗ e`) ◦ F (f)] = [F (f) ◦ (f∗k ⊗ e`)] =

[∑
j
F (f)`,j · f∗k ⊗ fj

]
Applying this equality twice, we obtain

δ0 ◦ af (f∗k ⊗ e`) = δY
(
F (f) ◦ (f∗k ⊗ e`)

)
=
[∑
j,m

F (f)`,j · f∗k ⊗ fm ⊗ f∗m ⊗ fj
]

=
[∑
i,m

F (f)i,m · f∗k ⊗ fm ⊗ e∗i ⊗ e`
]

=
[∑
i,n

F (f)n,k · e∗n ⊗ ei ⊗ e∗i ⊗ e`
]

= δX
(
(f∗k ⊗ e`) ◦ F (f)

)
= δ0 ◦ bf (f∗k ⊗ e`),

and therefore δ0 ◦ a = δ0 ◦ b, as required.
Similarly, the linear maps εX : EX → k give rise to a linear map

ε0 :
⊕
Y

XY −→ k

such that ε0 ◦ iX = εX for all objects X of C. Now for a homomorphism f : Y → Z in C and
g ∈ Homk

(
F (Z), F (Y )

)
, we have

ε0 ◦ af (g) = εY
(
F (f) ◦ g

)
= tr

(
F (f) ◦ g

)
= tr

(
g ◦ F (f)

)
= εZ

(
g ◦ F (f)

)
= ε0 ◦ bf (g),

hence ε0 ◦ a = ε0 ◦ b and there is a unique linear map

ε : End∨(F ) −→ k

such that ε ◦ q = ε0.

Proposition 8.7. The vector space End∨(F ) together with the linear maps

δ : End∨(F ) −→ End∨(F )⊗ End∨(F ) and ε : End∨(F ) −→ k

defined in Proposition 8.6 is a coalgebra.

Proof. Since End∨(F ) is spanned by elements of the form [ϕ], for ϕ ∈ EX and X an object of C, the
coassociativity follows if we show that (δ ⊗ id) ◦ δ coincides with (id ⊗ δ) ◦ δ when evaluated on [ϕ].
Using the first commutative diagram from Proposition 8.6, we obtain

(id⊗ δ) ◦ δ([ϕ]) = (id⊗ δ) ◦ δ ◦ qX(ϕ)

= (id⊗ δ) ◦ (qX ⊗ qX) ◦ δX(ϕ)

= (qX ⊗ qX ⊗ qX) ◦ (id⊗ δX) ◦ δX(ϕ)

= (qX ⊗ qX ⊗ qX) ◦ (δX ⊗ id) ◦ δX(ϕ)

= · · · = (δ ⊗ id) ◦ δ([ϕ]),

as required. The counitality follows by a similar argument.

31



Remark 8.8. For a finite-dimensional vector space V and an algebra A, it is well-known that spec-
ifying an A-module structure on V amounts to the same as giving a homomorphism of algebras
A → Endk(V ). Similarly, for a coalgebra C, a C-comodule structure on V amounts to the same as
a homomorphism of coalgebras Endk(V ) → C. In particular, V is canonically an Endk(V )-comodule
(via the identity coalgebra homomorphism).

Note that for X ∈ Ob(C), the linear map qX : EX → End∨(F ) is a coalgebra homomorphism by
Proposition 8.6. Thus we can consider F (X) as a End∨(F )-comodule via the coaction map

F (X) −→ EX ⊗ F (X)
qX⊗idF (X)−−−−−−−−→ End∨(F )⊗ F (X).

Hence, if we fix a basis (ei)i of F (X) then the coaction is given by v 7→
∑

i[v⊗ e∗i ]⊗ ei. Furthermore,
for a homomorphism f : X → Y in C, the linear map F (f) : F (X) → F (Y ) is a homomorphism of
End∨(F )-comodules. Thus F : C → Vectk can be lifted canonically to a functor

F̂ : C −→ End∨(F )− comod.

Writing ForEnd∨(F ) : End∨(F )−comod→ Vectk for the forgetful functor, we have F = ForEnd∨(F )◦F̂ .

Remark 8.9. Suppose that we are given two categories C and D with functors

F : C −→ Vectk and G : D −→ Vectk.

Further suppose that there is a functor T : C → D and a natural isomorphism γ : F → G ◦ T . Then
for every object X of C, we can define a coalgebra homomorphism

eXT,γ : Endk
(
F (X)

)
−→ Endk

(
G ◦ T (X)

)
, ϕ 7→ γY ◦ ϕ ◦ γ−1

X .

Furthermore, we can define a linear map eT,γ : End∨(F )→ End∨(G) with

eT,γ([ϕ]) = [γX ◦ ϕ ◦ γ−1
X ],

that is eT,γ ◦ qX = qT (X) ◦ eT,γX . Indeed, we have

[γX ◦ F (f) ◦ g ◦ γ−1
X ] = [F (f) ◦ γY ◦ g ◦ γ−1

X ] = [γY ◦ g ◦ γ−1
X ◦ F (f)] = [γY ◦ g ◦ F (f) ◦ γ−1

Y ]

for a homomorphism f : X → Y in C and g ∈ Homk
(
F (Y ), F (X)

)
, whence the universal property

of the equalizer yields the well-definedness of eT,γ . Since eT,γ is a coalgebra homomorphism for all
objects X of C, it is straightforward to see (using the commutative diagrams from Proposition 8.6)
that eT,γ is a coalgebra homomorphism.

Now let us write Cat/Vectk for the category of small categories over Vectk, that is, the category
whose objects are pairs (C, F ) of a small category C and a functor F : C → Vectk. The homomorphisms
are given by pairs (T, γ) as above. Then we can define a functor

End∨ : Cat/Vectk −→ Coalgk

from Cat/Vectk to the category of coalgebras over k by sending an object (C, F ) to the coalgebra
End∨(F ) and a homomorphism (T, γ) to the coalgebra homomorphism eT,γ

Theorem 8.10. Let C be a k-linear abelian category and F : C → Vectk a fiber functor. Then

F̂ : C −→ End∨(F )− comod

is an equivalence of categories.
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Proof (sketch). Let us start with a general observation: For any coablgebra (C, δ, ε) and a C-comodule
M , we can consider C ⊗M as a C-comodule with coaction map δ ⊗ idM : C ⊗M → C ⊗C ⊗M , and
the coaction map δM : M → C ⊗M thus becomes a homomorphism of C-comodules. Similarly, we
can consider C ⊗ C ⊗M as a C-comodule with action map δ ⊗ idC ⊗ idM , making both

idC ⊗ δM : C ⊗M → C ⊗ C ⊗M and δ ⊗ idM : C ⊗M → C ⊗ C ⊗M

homomorphisms of C-comodules. Furthermore, we claim that (M, δM ) is the kernel of

ϑM := idC ⊗ δM − δ ⊗ idM .

Indeed, we have (idC ⊗ δM )δM = (δ ⊗ idM ) ◦ δM by coassociativity, whence ϑM ◦ δM = 0, and
for a comodule M ′ with a homomorphism δ′ : M ′ → C ⊗ M such that ϑM ⊗ δ′ = 0, we define
u := (ε⊗ idM ) ◦ δ : M ′ →M and verify that

δM ◦ u = δM ◦ (ε⊗ idM ) ◦ δ′ = (ε⊗ idC ⊗ idM ) ◦ (idC ⊗ δM ) ◦ δ′

= (ε⊗ idC ⊗ idM ) ◦ (δ ⊗ idM ) ◦ δ′ = (idC ⊗ idM ) ◦ δ′ = δ′,

as required.
Now set C = End∨(F ). Our goal is to define (functorially in M) a homomorphism ϑ̂M : XM → YM

in a suitably enlarged version of C (called the ind-completion) such that F̂ (ϑ̂M ) = ϑM . Then we can
define a quasi-inverse of F̂ as the functor M 7→ ker(ϑ̂M ).

In order to do this, first note that since C is k-linear, we can define for every object X of C and
every k-vector space V an object X ⊗ V of C (as the coproduct of dimV copies of X) such that

HomC(X ⊗ V,−) ∼= Homk
(
V,HomC(X,−)

)
as functors from C to Vect, and via Yoenda’s lemma, we can define for every homomorphism f : X → Y
and every linear map g : V →W a homomorphism f ⊗ g : X ⊗ V → Y ⊗W . Furthermore, since F is
k-linear, we have F (X ⊗ V ) ∼= F (X) ⊗ V and F (f ⊗ g) = F (f) ⊗ g. (In other words, C is a module
category over Vectk and F is a module functor.)

Now consider the ind-object Ê :=
⊕

xX ⊗F (X)∗ of C, and note that Ê is sent by F to the vector

space
⊕

X F (X)⊗ F (X)∗ ∼=
⊕

X EX . Let Ĉ be the coequalizer of the homomorphisms

âf : X ⊗ F (Y )∗
f⊗idF (Y )∗−−−−−−→ Y ⊗ F (Y )∗ ⊆ Ê and b̂f : X ⊗ F (Y )∗

idX⊗F (f)∗−−−−−−−→ X ⊗ F (X)∗ ⊆ Ê,

where f runs through all homomorphisms f : X → Y in C. Then, by construction, F̂ (Ĉ) ∼= C as a
C-comodule. Furthermore, the coevaluation maps

X ⊗ F (X)∗
idX⊗coev′

F (X)
⊗idF (X)∗

−−−−−−−−−−−−−−−→ X ⊗ F (X)∗ ⊗ F (X)⊗ F (X)∗

induce a homomorphism δ̂ : Ĉ → Ĉ ⊗ C such that F (δ̂) = δ : C → C ⊗ C identifies with the comulti-
plication map.

For every C-comodule M , we can now set

ϑ̂M = idĈ ⊗ δM − δ̂ ⊗ idM : Ĉ ⊗M −→ Ĉ ⊗ C ⊗M,

so that F (ϑ̂M ) = ϑM , and define a functor from C − comod to C via M 7→ ker(ϑ̂M ). (Note that this
is functorial by the universal property of the kernel, and because ϑ̂M is natural in M .) This defines a
quasi-inverse for F̂ : C −→ C − comod because

F̂
(

ker(ϑ̂M )
)

= ker F̂ (ϑ̂M ) = ker(ϑM ) ∼= M

since F̂ is exact.
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Remark 8.11. Let C be a k-coalgebra and write F = ForC : C − comod −→ Vectk for the forgetful
functor. For every C-comodule X, we have a coalgebra homomorphism ϕX : EX = Endk(X) → C
corresponding to the coaction map X → C ⊗X, and by the universal property of the coproduct, we
obtain a homomorphism of coalgebras ϕ :

⊕
X EX −→ C such that ϕX = ϕ◦ iX for every C-comodule

X. If is straigntforward to check that ϕ◦a = ϕ◦b, with notation as in Remark 8.3, and so ϕ induces a
coalgebra homomorphism u : End∨(F )→ C. It turns out that u is an isomorphism, so C ∼= End∨(F ).

Corollary 8.12. The functor
End∨ : Cat/Vectk −→ Coalgk

induces an equivalence between Coalgk and the category of k-linear abelian categories with a fiber
functor. In particular, there is a bijection between coalgebras, up to isomorphism, and k-linear abelian
categories C with a fiber functor F , up to equivalence, given by

(C, F ) 7→ End∨(F ) and C 7→ (C − comod,ForC).

Proof. This follows from Theorem 8.10 and Remark 8.11

9 Reconstruction for monoidal categories

Remark 9.1. Recall that the category Cat of small categories has a monoidal structure via the
product of categories from Remark 1.5, and that a monoid in Cat is the same as a strict monoidal
category (see Example 6.2). For two small categories C,D and functors F : C → Vectk, G : D → Vectk,
we define the product functor

F ×G : C ⊗ D −→ Vectk

by (F ×G)(X,Y ) = F (X) ⊗G(Y ) and (f, g) 7→ F (f) ⊗ F (g), for objects X,Y and homomorphisms
f, g in C and D, respectively. This endows the category Cat/Vectk from Remark 8.9 with a monoidal
structure, and a monoid in Cat/Vectk is the same as a strict monoidal category C with a monoidal
functor F : C → Vectk.

Theorem 9.2. For categories C and D with functors F : C → Vectk and G : D −→ Vectk, there is a
coalgebra isomorphism

End∨(F ×G) ∼= End∨(F )⊗ End∨(G).

More precisely, the functor End∨ : Cat/Vectk −→ Coalgk is monoidal.

Proof (sketch). For all objects X of C and Y of D, there is a coalgebra isomorphism

Endk
(
F (X)

)
⊗ Endk

(
G(Y )

)
−→ Endk

(
F (X)⊗G(Y )

)
= Endk

(
(F ×G)(X,Y )

)
, ϕ⊗ ψ 7→ ϕ⊗ ψ.

These isomorphisms define mutually inverse linear maps

End∨(F )⊗ End∨(G)←→ End∨(F ×G).

More specifically, the map End∨(F )⊗End∨(G)→ End∨(F ×G) is given by [ϕ]⊗ [ψ] 7→ [ϕ⊗ ψ]. It is
straightforward to see that this map is a coalgebra homomorphism.

Corollary 9.3. If C is monoidal and F : C → Vectk can be endowed with the structure of a monoidal
functor then End∨(F ) has a canonical bialgebra structure.

Proof. By the Strictness Theorem 3.3 and the functoriality of End∨ (see Remark 8.9), we may assume
that C is strict. Then (C, F ) is a monoid in Cat/Vectk by Remark 9.1. Thus, by Lemma 6.3 and
Theorem 9.2, End∨(F ) is a monoid in Coalgk, i.e. a bialgebra.
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Remark 9.4. For C monoidal, (F,ϕ, ε) : C → Vectk a monoidal functor and X,Y objects of C, there
are canonical isomorphisms

Endk
(
F (X)

)
⊗ Endk

(
F (Y )

) ∼= Endk
(
F (X)⊗ F (Y )

) ∼= Endk
(
F (X ⊗ Y )

)
such that

ϑ⊗ ψ 7→ ϕ−1
X,Y ◦ (ϑ⊗ ψ) ◦ ϕX,Y =: ϑ⊗ψ.

The multiplication on End∨(F ) is given by [ϑ]⊗ [ψ] 7→ [ϑ⊗ψ].

Lemma 9.5. Let C be monoidal and (F,ϕ, ε) : C → Vectk a monoidal functor. Then the linear maps

ϕX,Y : F (X ⊗ Y ) −→ F (X)⊗ F (Y ) and ε : F (1) −→ k

are isomorphisms of End∨(F )-comodules, for all objects X,Y of C. In particular,

(F̂ , ϕ, ε) : C −→ End∨(F )− comod

is a monoidal functor.

Proof. Let us fix bases (ei)i of F (X) and (fj)j of F (Y ). Then we can define a basis (bij)i,j of F (X⊗Y )
via bij = ϕ−1

X,Y (ei ⊗ fj). Writing C = End∨(F ) and δF (X⊗Y ) : F (X ⊗ Y ) → C ⊗ F (X ⊗ Y ) for the
coaction map, we have

(idC ⊗ ϕX,Y ) ◦ δF (X⊗Y )(bi,j) = (idC ⊗ ϕX,Y )
(∑

k,`
[bi,j ⊗ b∗k,`]⊗ bk,`

)
=
∑

k,`
[bi,j ⊗ b∗k,`]⊗ ek ⊗ f`.

The coaction map on F (X)⊗ F (Y ) is given by

δF (X)⊗F (Y ) = (µ⊗ idF (X)⊗F (Y )) ◦ s ◦ (δF (X) ⊗ δF (Y ))

according to Remark 6.6, where we write s = (idC ⊗ βF (X),C ⊗ idF (Y )), and so we have

δF (X)⊗F (Y ) ◦ ϕ(bi,j) = (µ⊗ idF (X)⊗F (Y )) ◦ s
(∑

k,`
[ei ⊗ e∗k]⊗ ek ⊗ [fj ⊗ f∗` ]⊗ f`

)
=
∑

k,`

[
(ei ⊗ e∗k)⊗(fj ⊗ f∗` )]⊗ ek ⊗ f`

=
∑

k,`

[
bi,j ⊗ b∗k,`]⊗ ek ⊗ f`

= (idC ⊗ ϕX,Y ) ◦ δF (X⊗Y )(bi,j)

because
(ei ⊗ e∗k)⊗(fj ⊗ f∗` ) = ϕ−1

X,Y ◦
(
(ei ⊗ fj)⊗ (ek ⊗ f`)∗

)
◦ ϕX,Y = bi,j ⊗ b∗k,`.

This implies that ϕX,Y is a homomorphism of End∨(F )-comodules. Similarly, for x ∈ F (1) such that
ε(x) = 1 ∈ k, we have

(idC ⊗ ε) ◦ δF (1)(x) = [x⊗ x∗]⊗ 1 = [idF (1)]⊗ 1 = (η ⊗ idk)(x),

whence ε : F (X)→ k is a homomorphism of End∨(F )-comodules.

Definition 9.6. A tensor category over k is a k-linear abelian k-linearly monoidal category.

Corollary 9.7. There is a bijection between tensor categories over k with a monoidal fiber functor,
up to equivalence, and bialgebras over k, up to isomorphism.

Definition 9.8. An antipode on a bialgebra algebra B is a k-linear map S : B → B such that the
following diagram commutes:
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H

H ⊗H H ⊗H

H

H ⊗H H ⊗H

k

δ

S ⊗ idB

µ

δ

idB ⊗ S

µ

ε η

A pair (B,S) of a bialgebra and an antipode is called a Hopf algebra.

For time reasons, we do not prove the following lemma and instead refer the reader to Proposition
9.3.3 and the discussion after Proposition 9.23 in [Maj95].

Lemma 9.9. Let H be a Hopf algebra with antipode S : H → H.

(1) For every finite-dimensional H-module M , we can define an H-module structure on M∗ via

a · ξ(x) = ξ
(
S(x) · v

)
.

(2) For every finite-dimensional H-comodule N , we can define an H-comodule structure on N∗ with
coaction map δN∗ : N∗ → H ⊗N∗ given by

δN∗(ξ) = (S ⊗ ξ ⊗ idN∗) ◦ (δN ⊗ idN∗) ◦ coevN (1).

For each of the constructions in (1) and (2), the standard evaluation and coevaluation maps for M
and N are homomorphisms of H-modules or H-comodules, respectively. In particular, the monoidal
categories H −mod and H − comod have left-duals.

Remark 9.10. Let H be a Hopf algebra with antipode S : H → H, let M be an H-module and let
N be an H-comodule. If S is invertible then we can define an alternative H-module strucure on the
dual space ∗M = M∗ via (a · ξ)(x) = ξ(S−1 · x), and this makes ∗M a right dual of M in H −mod.
Similarly, we can define a right dual comodule ∗N of N . Thus, if the antipode S is invertible then the
monoidal categories H −mod and H − comod are rigid.

Lemma 9.11. Suppose that every object of C admits a left dual. Then there is a unique linear map
S : End∨(F ) −→ End∨(F ) with S([ϕ]) = [ϕ∗] for an object X of C and ϕ ∈ EX , where we view ϕ∗ as
an element of EX∗. Furthermore, S is an antipode on End∨(F ).

Proof. The map S is well-defined because we have[(
F (f) ◦ g

)∗]
=
[
g∗ ◦ F (f)∗

]
=
[
g∗ ◦ F (f∗)

]
=
[
F (f∗) ◦ g

]
=
[
F (f)∗ ◦ g

]
=
[(
g ◦ F (f)

)∗]
for all homomorphisms f : X → Y in C and all g ∈ Homk

(
F (Y ), F (X)

)
. For an object X of C and a

basis (ei)i of F (X), we have

µ ◦ (idC ⊗ S) ◦ δ(e∗i ⊗ ej) = µ ◦ (idC ⊗ S)
(∑

k
[e∗i ⊗ ek]⊗ [e∗k ⊗ ej ]

)
= µ

(∑
k
[e∗i ⊗ ek]⊗ [ej ⊗ e∗k]

)
=
∑

k

[
ϕ−1
X,X∗ ◦

(
(e∗i ⊗ ej)⊗ (ek ⊗ e∗k)

)
◦ ϕX,X∗

]
,
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where ej ⊗ e∗k is the endomorphism of F (X)∗ with (ej ⊗ e∗k)(e∗m) = δj,m · e∗k, and (e∗i ⊗ ej)⊗ (ek ⊗ e∗k)
is the endomorphism of F (X)⊗ F (X)∗ given by

(
(e∗i ⊗ ej)⊗ (ek ⊗ e∗k)

)
(em ⊗ e∗n) = δimδjn · (ek ⊗ e∗k).

Now we have ∑
k

ϕ−1
X,X∗ ◦ (ek ⊗ e∗k) = ϕ−1

X,X∗ ◦ coevF (X) = F (coevX)

as homomorphisms from k to F (X ⊗X∗), and we can similarly view e∗i ⊗ ej as a homomorphism from
F (X)⊗ F (X)∗ to k. Using these identifications, we further obtain

µ ◦ (id⊗ S) ◦ δ(e∗i ⊗ ej) =
∑

k

[
ϕ−1
X,X∗ ◦

(
(e∗i ⊗ ej)⊗ (ek ⊗ e∗k)

)
◦ ϕX,X∗

]
=
∑

k

[
ϕ−1
X,X∗ ◦ (ek ⊗ e∗k) ◦ (e∗i ⊗ ej) ◦ ϕX,X∗

]
=
[
F (coevX) ◦ (e∗i ⊗ ej) ◦ ϕX,X∗

]
=
[
(e∗i ⊗ ej) ◦ ϕX,X∗ ◦ F (coevX)

]
=
∑

k

[
(e∗i ⊗ ej) ◦ (ek ⊗ e∗k)

]
= δij · [idF (1)].

We also have η ◦ ε(e∗i ⊗ ej) = δ(δij) = δij · [idF (1)] and so η ◦ ε = µ ◦ (idC ⊗ S) ◦ δ, as required. The
equality η ◦ ε = µ ◦ (S ⊗ idC) ◦ δ is proven analogously.

Corollary 9.12. (1) There is a bijection between Hopf algebras over k, up to isomorphism, and
tensor categories over k with left duals and a monoidal fiber functor, up to equivalence.

(2) There is a bijection between Hopf algebras with invertible antipode, up to isomorphism, and rigid
tensor categories over k with a monoidal fiber functor, up to equivalence.

Lemma 9.13. If C admits a symmetric braiding β and (F, γ, ε) : C → Vectk is a symmetric monoidal
fiber functor then the bialgebra End∨(F ) is commutative.

Proof. For objects X,Y of C and linear endomorphisms ϕ and ψ of F (X) and F (Y ), respectively,
consider the following commutative diagram, where all vertical arrows are induced by γ and we write
s for the canonical symmetric braiding on Vectk:

F (X ⊗ Y ) F (Y ⊗X) F (Y ⊗X) F (X ⊗ Y )

F (X)⊗ F (Y ) F (Y )⊗ F (X) F (Y )⊗ F (X) F (X)⊗ F (Y )

F (βX,Y ) ψ⊗ϕ F (βY,X)

sF (X),F (Y ) ψ ⊗ ϕ sF (Y ),F (X)

ϕ⊗ψ

ϕ⊗ ψ

Here, the middle square commutes by the definition of ψ⊗ϕ and the left and right hand side squares
commute because F is symmetric. The composition along the bottom row is equal to ϕ ⊗ ψ by the
definition of s, and so the composition of the top row is equal to ϕ⊗ψ, again by definition. This
implies that in End∨(F ), we have

[ϕ] · [ψ] = [ϕ⊗ψ] = [F (βX,Y ) ◦ (ψ⊗ϕ) ◦ F (βY,X)] = [F (βY,X) ◦ F (βX,Y ) ◦ (ψ⊗ϕ)] = [ψ⊗ϕ] = [ψ] · [ϕ]

because β is symmetric; hence End∨(F ) is commutative.
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Corollary 9.14. There is a bijection between symmetric tensor categories over k with a symmetric
monoidal fiber functor, up to equivalence, and commutative bialgebras over k, up to isomorphism.

Remark 9.15. For every commutative Hopf algebra, the antipode is an invertible algebra homomor-
phism. This corresponds to the statement that in a symmetric monoidal category with left duals,
right duals must also exist, and taking left-duals is a monoidal functor.

Corollary 9.16. There is a bijection between rigid symmetric tensor categories over k with a sym-
metric monoidal fiber functor, up to equivalence, and commutative Hopf algebras over k, up to iso-
morphism.

Remark 9.17. Let (H,µH , εH , δH , ηH , S) be a commutative Hopf k-algebra. For any commutative
k-algebra (A,µA, ηA), we can define a group structure on

G(A) := Homk−Alg(H,A)

with neutral element 1G(A) = ηA ◦ εH and multiplication given by

f · g := µA ◦ (f ⊗ g) ◦ δH .

The inverse of f ∈ G(A) is f−1 = f ◦ S. Writing CommAlgk for the category of commutative
k-algebras, this construction gives rise to a functor

G = GH : CommAlgk −→ Grp

which we call the k-group scheme corresponding to H.
For a finite-dimensional k-vector space M , let us also consider the functor

M̂ : CommAlgk −→ Set, M 7→ A⊗M.

A G-module structure on M is a natural transformation G × M̂ −→ N̂ such that the components
G(A) × (A ⊗M) → A ⊗M afford A-linear G(A)-module structures on M ⊗ A for all commutative
k-algebras A. For any H-comodule (M, δM ), we can define a G-module structure on M via

f · (m⊗ 1) = (f ⊗ idM ) ◦ δM

for f ∈ G(A) and m ∈ M , extended by A-linearity. This gives rise to a monoidal equivalence
between H − comod and the category Rep(G) of G-modules. In view of the above results, there is a
bijection between k-group schemes, up to isomorphism, and k-linear abelian rigid symmetric monoidal
categories. Two important special cases are as follows:

(1) If G is a finite group then k[G] is a Hopf algebra with comultiplication, counit and antipode
given by

g 7→ g ⊗ g, g 7→ 1, g 7→ g−1

for g ∈ G, respectively, extended by k-linearity. The dual Hopf algebra k[G]∗ is commutative,
and it is straightforward to check that the corresponding group scheme G satisfies G(k) = G.
Thus, we have a monoidal equivalence between Repk(G) and Rep(G) (since both categories
are equivalent to k[G]−mod ∼= k[G]∗ − comod).

(2) If k is algebraically closed and H is reduced and finitely-generated then G(k) = Spec(H) is an
affine algebraic group over k. The category Rep(G) is equivalent to the category of rational
representations of G(k).
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For a general k-linear abelian rigid symmetric monoidal category with a symmetric monoidal fiber
functor F , one can check that the group

G(k) = Homk−Alg

(
End∨(F ), k

)
⊆ End∨(F )∗ ∼= End(F )

identifies with the set of monoidal natural endomorphisms of F , which is indeed a group by rigidity
(cf. Lemma 4.23).

In view of the above results, a rigid symmetric tensor category C over k is equivalent to the category
of comodules over a commutative Hopf algebra (or equivalently, to the category of representations of
a k-group scheme) if and only if it admits a symmetric monoidal fiber functor F : C → Vectk. Thus,
it becomes important to construct fiber functors for monoidal categories. An important result along
these lines is the following theorem of P. Deligne:

Theorem 9.18. Let k be a field of characteristic 0. For a k-linear rigid symmetric monoidal category
C with HomC(1,1) ∼= k, the following are equivalent:

(1) C admits a k-linear exact faithful symmetric monoidal functor F : C −→ A − mod for some
commutative k-algebra A;

(2) every object of C has non-negative integer dimension;

(3) every non-zero object of C has positive integer dimension;

(4) for every object X of C, there is n > 0 such that the n-th exterior power ΛnX of X vanishes.

In points (2) and (3), the dimension of an object of X of C is defined as

dimX = evX ◦ βX,X∗ ◦ coevX ∈ EndC(1) ∼= k.

Since C is symmetric, there is for every object X of C an algebra homomorphism

ϕ : k[Sn] −→ EndC(X
⊗n),

and the exterior power ΛnX is defined as the image of the endomorphism ϕ
(∑

σ sign(σ) · σ
)
. Under

the equivalent conditions (1)–(4), reconstruction theory implies that C is equivalent to a category of
representations of a group scheme over A.

If we take k = C then we can also characterize a larger class of tensor categories via a simple
growth assumption: We say that an object X of a tensor category C has sub-exponential growth if
there exists x > 0 such that the composition length of X⊗n is bounded by xn for n > 0.

Theorem 9.19 (Deligne). For a rigid symmetric monoidal category C over C, the following are
equivalent:

(1) C admits an exact faithful C-linear symmetric monoidal functor F : C → SVectC to the category
of super vector spaces;

(2) for every object X of C, there is a partition λ such that the Schur functor SλX vanishes;

(3) every object of C has sub-exponential growth.
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Potential topics for talks

The topics that appear in gray have already been chosen.

(1) pivotal categories, traces and dimension;

(2) Frobenius-Perron dimension;

(3) monoidal categories by generators and relations (via diagrams);

(4) the Temperley-Lieb category (and knot invariants);

(5) tensor triangular geometry;

(6) the geometric Satake equivalence;

(7) negligible morphisms and semisimplification;

(8) the Drinfel’d double and the Drinfel’d center;

(9) sln-webs;

(10) interpolation categories;

(11) · · ·
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