National University of Singapore
Jonathan Gruber
Semester 2, academic year 2022 / 2023
March 24, 2023
Exercise 1. - to be handed in by 17 February 2023
Give a detailed proof of the strictness theorem (Theorem 3.3 in the lecture notes).
In more detail, prove that any monoidal category $(\mathcal{C}, \mathbf{1}, \otimes, \alpha, \lambda, \rho)$ is monoidally equivalent to the strict monoidal category $\operatorname{End}_{\bmod -\mathcal{C}}(\mathcal{C})$ of right \mathcal{C}-module endofuctors of \mathcal{C} (where we consider \mathcal{C} as a right module category over \mathcal{C}, as in Example 2.3(1) in the lecture notes).

Remark: In view of Remark 1.15(3), it suffices to construct a monoidal functor

$$
(F, \varphi, \varepsilon): \mathcal{C} \longrightarrow \mathbf{E n d}_{\bmod -\mathcal{C}}(\mathcal{C})
$$

and a functor $G: \operatorname{End}_{\bmod -\mathcal{C}}(\mathcal{C}) \rightarrow \mathcal{C}$ such that $G \circ F$ is naturally isomorpic to the identity functor on \mathcal{C} and $F \circ G$ is naturally isomorphic to the identity functor on $\mathbf{E n d}_{\bmod -\mathcal{C}}(\mathcal{C})$. You do not need to endow G with the structure of a monoidal functor or check that the natural isomorphisms are monoidal.
(But you are still encouraged to do this for yourself.)
Exercise 2. - to be handed in by 3 March 2023
Let \mathcal{C} and \mathcal{D} be rigid monoidal categories and let $(F, \varphi, \varepsilon): \mathcal{C} \rightarrow \mathcal{D}$ and $\left(G, \varphi^{\prime}, \varepsilon^{\prime}\right): \mathcal{C} \rightarrow \mathcal{D}$ be monoidal functors. Further let $u: F \rightarrow G$ be a monoidal natural transformation. Show that u is an isomorphism of functors.
You can follow the sequence of hints below.
We first make the following definition:
Definition. A contragrediant of a homomorphism $f: X \rightarrow Y$ in \mathcal{C} is a homomorphism $f^{\vee}: X^{*} \rightarrow Y^{*}$ such that

$$
\operatorname{ev}_{Y} \circ\left(f^{\vee} \otimes f\right)=\operatorname{ev}_{X} \quad \text { and } \quad\left(f \otimes f^{\vee}\right) \circ \operatorname{coev}_{X}=\operatorname{coev}_{Y}
$$

Now you can proceed as follows:
(a) Let $f: X \rightarrow Y$ be a homomorphism in \mathcal{C} with a contragredient $f^{\vee}: X^{*} \rightarrow Y^{*}$. Show that

$$
f^{*} \circ f^{\vee}=\operatorname{id}_{X^{*}} \quad \text { and } \quad f^{\vee} \circ f^{*}=\operatorname{id}_{Y^{*}}
$$

Hint: Recall that $\mathrm{id}_{X^{*}}=\left(\mathrm{ev}_{X} \otimes \mathrm{id}_{X^{*}}\right) \circ\left(\mathrm{id}_{X^{*}} \otimes \operatorname{coev}_{X}\right)$ by the zig-zag relation and

$$
f^{*}=\left(\mathrm{ev}_{Y} \otimes \mathrm{id}_{X^{*}}\right) \circ\left(\mathrm{id}_{Y^{*}} \otimes f \otimes \mathrm{id}_{X^{*}}\right) \circ\left(\mathrm{id}_{Y^{*}} \otimes \operatorname{coev}_{X}\right)
$$

by definition.
(b) Show that $u_{X^{*}}: F(X)^{*}=F\left(X^{*}\right) \rightarrow G\left(X^{*}\right)=G(X)^{*}$ is a contragredient of $u_{X}: F(X) \rightarrow G(X)$, for all objects X of \mathcal{C}.

Hint: Use the definition of monoidal natural transformations and of the evaluation and coevaluation maps for $F(X)$; see Definition 1.14 and the proof of Lemma 4.8 in the lecture notes.
(c) Conclude that u_{X} is an isomorphism for every object X of \mathcal{C}.

Exercise 3. - to be handed in by 14 April 2023
Let G be a finite group and consider the category $\operatorname{Vect}_{\mathbb{k}}^{G}$ with the forgetful functor

$$
F: \operatorname{Vect}_{\mathbb{k}}^{G} \longrightarrow \text { Vect }_{\mathbb{k}}
$$

(a) Show that $\operatorname{End}(F)$ is isomorphic to the bialgebra $\operatorname{Fun}(G, \mathbb{k})$ of \mathbb{k}-valued functions on G, where the counit $\varepsilon: \operatorname{Fun}(G, \mathbb{k}) \rightarrow \mathbb{k}$ and the comultiplication

$$
\delta: \operatorname{Fun}(G, \mathbb{k}) \longrightarrow \operatorname{Fun}(G, \mathbb{k}) \otimes \operatorname{Fun}(G, \mathbb{k}) \cong \operatorname{Fun}(G \times G, \mathbb{k})
$$

are defined by

$$
\varepsilon(f)=f(e) \quad \text { and } \quad \delta(f)(g, h)=f(g h)
$$

respectively, for $f \in \operatorname{Fun}(G, \mathbb{k})$ and $g, h \in G$.
Remark: In this exercise, you may assume without proof that the canonical homomorphism

$$
\operatorname{End}(F) \otimes \operatorname{End}(F) \longrightarrow \operatorname{End}(F \times F)
$$

is an isomorphism, and that the comultiplication on $\operatorname{End}(F)$ arising by duality from the multiplication on $\operatorname{End}^{\vee}(F)$ sends a natural endomorphism φ of F to the natural endomorphism $\tilde{\varphi}$ of $F \times F$ with components

$$
\tilde{\varphi}_{X, Y}: F(X) \otimes F(Y) \cong F(X \otimes Y) \xrightarrow{\varphi_{X \otimes Y}} F(X \otimes Y) \cong F(X) \otimes F(Y)
$$

Similarly, you may assume that the counit on $\operatorname{End}(F)$ is given by

$$
\varphi \longmapsto \varphi_{\mathbf{1}} \in \operatorname{End}_{\mathbb{k}}(F(\mathbf{1})) \cong \mathbb{k}
$$

(b) Show that the dual bialgebra $\operatorname{Fun}(G, \mathbb{k})^{*}$ of $\operatorname{Fun}(G, \mathbb{k})$ is isomorphic (as a bialgebra) to the group algebra $\mathbb{k}[G]$.
(c) Conclude that $\operatorname{Vect}_{\mathrm{k}}^{G}$ is monoidally equivalent to the category of $\mathbb{k}[G]$-comodules.

