National University of Singapore Semester 2, academic year 2022 / 2023 Jonathan Gruber March 24, 2023

Exercise 1. - to be handed in by 17 February 2023

Give a detailed proof of the strictness theorem (Theorem 3.3 in the lecture notes).

In more detail, prove that any monoidal category $(\mathcal{C}, \mathbf{1}, \otimes, \alpha, \lambda, \rho)$ is monoidally equivalent to the strict monoidal category $\mathbf{End}_{\mathrm{mod}-\mathcal{C}}(\mathcal{C})$ of right \mathcal{C} -module endofuctors of \mathcal{C} (where we consider \mathcal{C} as a right module category over \mathcal{C} , as in Example 2.3(1) in the lecture notes).

Remark: In view of Remark 1.15(3), it suffices to construct a monoidal functor

 $(F, \varphi, \varepsilon) \colon \mathcal{C} \longrightarrow \mathbf{End}_{\mathrm{mod}-\mathcal{C}}(\mathcal{C})$

and a functor $G: \operatorname{End}_{\operatorname{mod}-\mathcal{C}}(\mathcal{C}) \to \mathcal{C}$ such that $G \circ F$ is naturally isomorpic to the identity functor on \mathcal{C} and $F \circ G$ is naturally isomorphic to the identity functor on $\operatorname{End}_{\operatorname{mod}-\mathcal{C}}(\mathcal{C})$. You do not need to endow G with the structure of a monoidal functor or check that the natural isomorphisms are monoidal. (But you are still encouraged to do this for yourself.)

Exercise 2. – to be handed in by 3 March 2023

Let \mathcal{C} and \mathcal{D} be rigid monoidal categories and let $(F, \varphi, \varepsilon) \colon \mathcal{C} \to \mathcal{D}$ and $(G, \varphi', \varepsilon') \colon \mathcal{C} \to \mathcal{D}$ be monoidal functors. Further let $u \colon F \to G$ be a monoidal natural transformation. Show that u is an isomorphism of functors.

You can follow the sequence of hints below.

We first make the following definition:

Definition. A contragrediant of a homomorphism $f: X \to Y$ in \mathcal{C} is a homomorphism $f^{\vee}: X^* \to Y^*$ such that

 $\operatorname{ev}_Y \circ (f^{\vee} \otimes f) = \operatorname{ev}_X$ and $(f \otimes f^{\vee}) \circ \operatorname{coev}_X = \operatorname{coev}_Y$.

Now you can proceed as follows:

(a) Let $f: X \to Y$ be a homomorphism in \mathcal{C} with a contragredient $f^{\vee}: X^* \to Y^*$. Show that

 $f^* \circ f^{\vee} = \operatorname{id}_{X^*}$ and $f^{\vee} \circ f^* = \operatorname{id}_{Y^*}$.

Hint: Recall that $id_{X^*} = (ev_X \otimes id_{X^*}) \circ (id_{X^*} \otimes coev_X)$ by the zig-zag relation and

 $f^* = (\operatorname{ev}_Y \otimes \operatorname{id}_{X^*}) \circ (\operatorname{id}_{Y^*} \otimes f \otimes \operatorname{id}_{X^*}) \circ (\operatorname{id}_{Y^*} \otimes \operatorname{coev}_X)$

by definition.

(b) Show that $u_{X^*} \colon F(X)^* = F(X^*) \to G(X^*) = G(X)^*$ is a contragredient of $u_X \colon F(X) \to G(X)$, for all objects X of \mathcal{C} .

Hint: Use the definition of monoidal natural transformations and of the evaluation and coevaluation maps for F(X); see Definition 1.14 and the proof of Lemma 4.8 in the lecture notes.

(c) Conclude that u_X is an isomorphism for every object X of \mathcal{C} .

Exercise 3. - to be handed in by 14 April 2023

Let G be a finite group and consider the category \mathbf{Vect}^G_{\Bbbk} with the forgetful functor

 $F: \mathbf{Vect}^G_{\Bbbk} \longrightarrow \mathbf{Vect}_{\Bbbk}.$

(a) Show that $\operatorname{End}(F)$ is isomorphic to the bialgebra $\operatorname{Fun}(G, \Bbbk)$ of \Bbbk -valued functions on G, where the counit $\varepsilon \colon \operatorname{Fun}(G, \Bbbk) \to \Bbbk$ and the comultiplication

$$\delta \colon \operatorname{Fun}(G, \Bbbk) \longrightarrow \operatorname{Fun}(G, \Bbbk) \otimes \operatorname{Fun}(G, \Bbbk) \cong \operatorname{Fun}(G \times G, \Bbbk)$$

are defined by

 $\varepsilon(f) = f(e)$ and $\delta(f)(g,h) = f(gh)$

respectively, for $f \in Fun(G, \Bbbk)$ and $g, h \in G$.

Remark: In this exercise, you may assume without proof that the canonical homomorphism

 $\operatorname{End}(F) \otimes \operatorname{End}(F) \longrightarrow \operatorname{End}(F \times F)$

is an isomorphism, and that the comultiplication on $\operatorname{End}(F)$ arising by duality from the multiplication on $\operatorname{End}^{\vee}(F)$ sends a natural endomorphism φ of F to the natural endomorphism $\tilde{\varphi}$ of $F \times F$ with components

 $\tilde{\varphi}_{X,Y} \colon F(X) \otimes F(Y) \cong F(X \otimes Y) \xrightarrow{\varphi_{X \otimes Y}} F(X \otimes Y) \cong F(X) \otimes F(Y).$

Similarly, you may assume that the counit on End(F) is given by

$$\varphi \longmapsto \varphi_{\mathbf{1}} \in \operatorname{End}_{\Bbbk}(F(\mathbf{1})) \cong \Bbbk.$$

- (b) Show that the dual bialgebra $\operatorname{Fun}(G, \Bbbk)^*$ of $\operatorname{Fun}(G, \Bbbk)$ is isomorphic (as a bialgebra) to the group algebra $\Bbbk[G]$.
- (c) Conclude that \mathbf{Vect}^G_{\Bbbk} is monoidally equivalent to the category of $\Bbbk[G]$ -comodules.